Understanding International Prices: Customers as Capital

Lukasz A. Drozd and Jaromir B. Nosal

University of Minnesota
Presentation for the National Bank of Poland

- Fundamental features of international price data
- Aggregate data:
- Real export and import prices of a country positively correlated
- Both positively correlated with the real exchange rate
- Disaggregated data shows evidence of pricing to market
- export price \neq domestic price for the same commodities
- vary systematically with the real exchange rate
- Puzzle for a large class of models

Outline

- Illustrate why these observations are puzzling
- Document correlation of aggregate prices
- Document pricing-to-market using disaggregated data
- Propose model with marketing and customers as capital
- Show how model consistent with prices and quantities

Illustrate the Puzzle for Standard Theory

- Assumes
- country specific tradable goods
- consumption baskets biased towards the home good
- law of one price for each tradable good

Illustrate the Puzzle for Standard Theory

- Assumes
- country specific tradable goods
- consumption baskets biased towards the home good
- law of one price for each tradable good
- inconsistent with pricing-to-market observations

Illustrate the Puzzle for Standard Theory

- Assumes
- country specific tradable goods
- consumption baskets biased towards the home good
- law of one price for each tradable good
- inconsistent with pricing-to-market observations
- show also inconsistent with aggregate data

Illustrate the Puzzle for Standard Theory

DOMESTIC COUNTRY

Produces domestic goods CPI mostly comprised of domestic goods	P_{f}	Produces foreign goods CPI mostly comprised of foreign goods	
		P_{d}	

Illustrate the Puzzle for Standard Theory

DOMESTIC COUNTRY

| Produces domestic goods
 CPI mostly comprised of
 domestic goods | P_{f} | Produces foreign goods
 CPI mostly comprised of
 foreign goods |
| :--- | :--- | :--- | :--- |
| | P_{d} | |

$$
\begin{aligned}
p_{m} & \equiv \frac{P_{f}}{C P I} \equiv \frac{P_{f}}{\left(P_{d}\right)^{\omega}\left(P_{f}\right)^{1-\omega}}=\left(\frac{P_{f}}{P_{d}}\right)^{\omega} \\
p_{x} & \equiv \frac{P_{d}}{C P I} \equiv \frac{P_{d}}{\left(P_{d}\right)^{\omega}\left(P_{f}\right)^{1-\omega}}=\left(\frac{P_{d}}{P_{f}}\right)^{1-\omega}
\end{aligned}
$$

Illustrate the Puzzle for Standard Theory

DOMESTIC COUNTRY

Produces domestic goods CPI mostly comprised of domestic goods 1 $\frac{1}{2}<\omega<1$	P_{f}	Produces foreign goods CPI mostly comprised of foreign goods

$$
p_{m} \equiv \frac{P_{f}}{C P I} \equiv \frac{P_{f}}{\left(P_{d}\right)^{\omega}\left(P_{f}\right)^{1-\omega}}=\left(\frac{P_{f}}{P_{d}}\right)^{\omega}
$$

$$
\Rightarrow \operatorname{corr}\left(p_{x}, p_{m}\right)=-1
$$

$$
p_{x} \equiv \frac{P_{d}}{C P I} \equiv \frac{P_{d}}{\left(P_{d}\right)^{\omega}\left(P_{f}\right)^{1-\omega}}=\left(\frac{P_{d}}{P_{f}}\right)^{1-\omega}
$$

$$
\Rightarrow \operatorname{corr}\left(p_{x}, x\right)=-1
$$

$$
x \equiv \frac{C P I^{*}}{C P I}=\frac{\left(P_{f}\right)^{\omega}\left(P_{d}\right)^{1-\omega}}{\left(P_{d}\right)^{\omega}\left(P_{f}\right)^{1-\omega}}=\left(\frac{P_{f}}{P_{d}}\right)^{2 \omega-1}
$$

Illustrate the Puzzle for Standard Theory

DOMESTIC COUNTRY

| Produces domestic goods
 CPI mostly comprised of
 domestic goods
 1
 $\frac{1}{2}<\omega<1$ | P_{f} | Produces foreign goods
 CPI mostly comprised of
 foreign goods |
| :--- | :--- | :--- | :--- |

$$
p_{m} \equiv \frac{P_{f}}{C P I} \equiv \frac{P_{f}}{\left(P_{d}\right)^{\omega}\left(P_{f}\right)^{1-\omega}}=\left(\frac{P_{f}}{P_{d}}\right)^{\omega}
$$

$$
\Rightarrow \operatorname{corr}\left(p_{x}, p_{m}\right)=-1
$$

$$
p_{x} \equiv \frac{P_{d}}{C P I} \equiv \frac{P_{d}}{\left(P_{d}\right)^{\omega}\left(P_{f}\right)^{1-\omega}}=\left(\frac{P_{d}}{P_{f}}\right)^{1-\omega}
$$

$$
\Rightarrow \operatorname{corr}\left(p_{x}, x\right)=-1
$$

$$
x \equiv \frac{C P I^{*}}{C P I}=\frac{\left(P_{f}\right)^{\omega}\left(P_{d}\right)^{1-\omega}}{\left(P_{d}\right)^{\omega}\left(P_{f}\right)^{1-\omega}}=\left(\frac{P_{f}}{P_{d}}\right)^{2 \omega-1}
$$

Similar results hold for sticky price models or constant markup models (Dixit-Stiglitz)

Evidence for Correlations of Aggregate Prices

12 major OECD countries
Statistics refer to detrended quarterly series, 1980-2004

	Statistic	
	$\operatorname{corr}\left(p_{x}, p_{m}\right)$	$\operatorname{corr}\left(p_{x}, x\right)$
OECD median	0.87	0.61

where

$$
p_{x}=\frac{E P I}{C P I}, \quad p_{m}=\frac{I P I}{C P I} \quad x=\frac{C P I^{*}}{C P I}
$$

$E P I=$ export price index, $I P I=$ import price index
Data has opposite signs as the standard model

Disaggregated Evidence For Pricing-To-Market

Disaggregated Evidence For Pricing-To-Market

- Chosen OECD country: Japan
- Strong patterns on macro level (all correlations close to 1)
- Disaggregated data suggests
- Export price movements attributable to pricing-to-market
- reminiscent of Marston (1990)

Disaggregated Evidence For Pricing-To-Market

- Disaggregated wholesale price data for Japan 1995-2004
- Quarterly frequency, detrended using HP-filter
- 31 manufacturing commodities: copying machines, computers, etc...

Disaggregated Evidence For Pricing-To-Market

- Disaggregated wholesale price data for Japan 1995-2004
- Quarterly frequency, detrended using HP-filter
- 31 manufacturing commodities: copying machines, computers, etc...
- Domestic Price: $D P^{i}$
- price of goods produced and sold at home
- Export Price : EP ${ }^{i}$
- price of goods produced at home but sold abroad

Micro Evidence For Pricing-To-Market

- Decomposing movements in export prices

$$
p_{x}^{i} \equiv \frac{E P^{i}}{C P I} \equiv \underbrace{\frac{E P^{i}}{D P^{i}}}_{\text {PTM }} \underbrace{\frac{D P^{i}}{C P I}}_{\text {RPM }}
$$

PTM. Pricing-To-Market

- deviations of export price from domestic price for the same good

RPM. Relative Price Movements

- deviations of domestic price of the good from CPI

Micro Evidence For Pricing-To-Market

- Decomposing movements in export prices

$$
p_{x}^{i} \equiv \frac{E P^{i}}{C P I} \equiv \underbrace{\frac{E P^{i}}{D P^{i}}}_{\text {PTM }} \underbrace{\frac{D P^{i}}{C P I}}_{\text {RPM }}
$$

- Decomposing volatility: $\operatorname{std}\left(p_{x}^{i}\right) / \operatorname{std}(x) \approx 88 \%$

$$
\begin{aligned}
& \mathrm{PTM}=\frac{\operatorname{std}\left(\frac{E P^{i}}{D P^{i}}\right)}{\operatorname{std}\left(\frac{E P^{i}}{D P^{i}}\right)+\operatorname{std}\left(\frac{D P^{i}}{C P I}\right)} \approx 80 \% \\
& \mathrm{RPM}=\frac{\operatorname{std}\left(\frac{D P^{i}}{C P I}\right)}{\operatorname{std}\left(\frac{E P^{i}}{D P^{i}}\right)+\operatorname{std}\left(\frac{D P^{i}}{C P I}\right)} \approx 20 \%
\end{aligned}
$$

- Volatility attributable to pricing-to-market (PTM)

Micro Evidence For Pricing-To-Market

- Decomposing movements in export prices

$$
p_{x}^{i} \equiv \frac{E P^{i}}{C P I} \equiv \underbrace{\frac{E P^{i}}{D P^{i}}}_{\text {PTM }} \underbrace{\frac{D P^{i}}{C P I}}_{\text {RPM }}
$$

- Decomposing correlation with $x: \operatorname{corr}\left(p_{x}^{i}, x\right)=0.81$

$$
\begin{aligned}
& \mathrm{PTM}=\operatorname{corr}\left(\frac{E P^{i}}{D P^{i}}, x\right)=0.84 \\
& \mathrm{RPM}=\operatorname{corr}\left(\frac{D P^{i}}{C P I}, x\right)=-0.14
\end{aligned}
$$

- Correlation attributable to pricing-to-market (PTM)

Data - Summary

- Aggregate data
- real export and import prices positively correlated
- real export price positively correlated with the real exchange rates
- Disaggregated data suggests
- export price movements can be attributed to pricing-to-market for more evidence see the survey by Goldberg and Knetter (1997)

Solution: Marketing Frictions

- Building market shares is costly and time consuming
as argued by Dornbusch (1987) and Krugman (1986)
- Leads to variable markups and pricing-to-market

Solution: Marketing Frictions

- Building market shares is costly and time consuming
as argued by Dornbusch (1987) and Krugman (1986)
- Leads to variable markups and pricing-to-market
- Our contribution
- develop an explicit model in which customers are capital
- make it into a quantitative GE model
- address the question how promising is this mechanism to account for the price data

Related Literature

- Models with Time-Varying Markups (Dornbusch 1987, Krugman 1986)
- Consumer Search: Alessandria $(2004,2005)$
- Vertical Industry Structure: Atkeson and Burstein (2006)
- Local Nontradable Component: Dedola and Corsetti $(2002,2004)$
- Short-Run/Long-Run Elasticity Puzzle
- Sunk Cost of Entry: Kim Ruhl (2004)
- Evidence: Eaton and Kortum (2002), Head and Ries (2001), Hummels (2001), Yi (2003), Blonigen and Wilson (1999), Reinert and Roland-Holst (1992) (2004)
- Incomplete Pass-Through Literature
- Goldberg and Campa (2005, 2006), Goldberg and Knetter (1997), Marston (1990)

Model of Customers as Capital

Basic Structure

- Symmetric world with two-countries and country-specific goods
- d good produced in the domestic country
- f good produced in the foreign country
- Composite consumption and investment good
- domestic country: $c+i=G(d, f)$
- foreign country: $c^{*}+i^{*}=G\left(f^{*}, d^{*}\right)$
- d and f the only tradable goods
- Physical capital and labor immobile across countries

Production Technology

- Production technology

$$
\text { domestic: } z F(k, l) \quad \text { foreign: } z^{*} F\left(k^{*}, l^{*}\right)
$$

- Productivity shocks

$$
\log \left(z_{t}\right)=\psi \log \left(z_{t-1}\right)+\varepsilon_{t} \quad \log \left(z_{t}^{*}\right)=\psi \log \left(z_{t-1}^{*}\right)+\varepsilon_{t}^{*}
$$

Production Technology

- Production technology

$$
\text { domestic: } z F(k, l) \quad \text { foreign: } z^{*} F\left(k^{*}, l^{*}\right)
$$

- Productivity shocks

$$
\log \left(z_{t}\right)=\psi \log \left(z_{t-1}\right)+\varepsilon_{t} \quad \log \left(z_{t}^{*}\right)=\psi \log \left(z_{t-1}^{*}\right)+\varepsilon_{t}^{*}
$$

- Technology summarized by unit production cost v

$$
v\left(s^{t}\right)=\min _{k, l}\left\{w\left(s^{t}\right) l+r\left(s^{t}\right) k \mid z\left(s^{t}\right) F(k, l)=1\right\}
$$

- Let $s^{t}=\left(s_{0}, \ldots, s_{t}\right)$ where $s_{t}=\left(\varepsilon_{t}, \varepsilon_{t}^{*}\right)$ with prob. distribution $\mu\left(s^{t}\right)$

Market Structure

Foreign Country

Producers

Wholesale trade

- matching and bargaining

Retailers
Local retail trade

- competitive market

Households

Flow of Goods

Prices

Domestic Producers: Production

- Measure one of producers
- Produce good d according to CRS technology: $z k^{\alpha} l^{1-\alpha}$
- Marginal cost of producing an additional unit is v

Domestic Producers: Marketing Friction

- Basic idea:
- customers are capital
- producers can only sell to their customers
- new customers are attracted by relative marketing capital
- marketing capital is accumulated
- takes time to figure out how to attract new customers
- time to accumulate marketing capital

Domestic Producers: Marketing Friction

- Each with a customer list H_{d}, H_{d}^{*} and marketing capital m_{d}, m_{d}^{*}
- Can only sell to customers from the list (a fixed amount per period)
- Marketing capital brings new customers to the list

Domestic Producers: Marketing Friction

- Each with a customer list H_{d}, H_{d}^{*} and marketing capital m_{d}, m_{d}^{*}
- Can only sell to customers from the list (a fixed amount per period)
- Marketing capital brings new customers to the list

$$
\begin{aligned}
& \frac{m_{d}}{\bar{m}_{d}+\bar{m}_{f}} h \text { - searching retailers who become new customers } \\
& h \text { - searching retailers (potential new customers) }
\end{aligned}
$$

Domestic Producers: Marketing Friction

- Each with a customer list H_{d}, H_{d}^{*} and marketing capital m_{d}, m_{d}^{*}
- Can only sell to customers from the list (a fixed amount per period)
- Marketing capital brings new customers to the list

$$
\begin{aligned}
& \frac{m_{d}}{\bar{m}_{d}+\bar{m}_{f}} h \text { - searching retailers who become new customers } \\
& h \text { - searching retailers (potential new customers) }
\end{aligned}
$$

- Customer list evolves according to the law

$$
H_{d}=\left(1-\delta_{H}\right) H_{d,-1}+\frac{m_{d}}{\bar{m}_{d}+\bar{m}_{f}} h
$$

Domestic Producers: Marketing Friction

- Each with a customer list H_{d}, H_{d}^{*} and marketing capital m_{d}, m_{d}^{*}
- Can only sell to customers from the list (a fixed amount per period)
- Marketing capital brings new customers to the list

$$
\begin{aligned}
& \frac{m_{d}}{\bar{m}_{d}+\bar{m}_{f}} h \text { - searching retailers who become new customers } \\
& h \text { - searching retailers (potential new customers) }
\end{aligned}
$$

- Customer list evolves according to the law

$$
H_{d}=\left(1-\delta_{H}\right) H_{d,-1}+\frac{m_{d}}{\bar{m}_{d}+\bar{m}_{f}} h
$$

- Marketing capital evolves according to the law

$$
m_{d}=\left(1-\delta_{m}\right) m_{d,-1}+a_{d}-\phi m_{d,-1}\left(\frac{a_{d}}{m_{d,-1}}-\delta_{m}\right)^{2}
$$

Domestic Producers: Marketing Friction

- Each with a customer list H_{d}, H_{d}^{*} and marketing capital m_{d}, m_{d}^{*}
- Can only sell to customers from the list (a fixed amount per period)
- Marketing capital brings new customers to the list

$$
\begin{aligned}
& \frac{m_{d}}{\bar{m}_{d}+\bar{m}_{f}} h \text { - searching retailers who become new customers } \\
& h \text { - searching retailers (potential new customers) }
\end{aligned}
$$

- Customer list evolves according to the law ($H_{d,-1}$ - state variable)

$$
H_{d}=\left(1-\delta_{H}\right) H_{d,-1}+\frac{m_{d}}{\bar{m}_{d}+\bar{m}_{f}} h
$$

- Marketing capital evolves according to the law ($m_{d,-1}$ - state variable)

$$
m_{d}=\left(1-\delta_{m}\right) m_{d,-1}+a_{d}-\phi m_{d,-1}\left(\frac{a_{d}}{m_{d,-1}}-\delta_{m}\right)^{2}
$$

Domestic Producers: Profit Maximization

- Maximize expected present value of Π

$$
\Pi=\left(p_{d}-v\right) d+\left(x p_{d}^{*}-v\right) d^{*}-v a_{d}-x v^{*} a_{d}^{*}
$$

subject to

- sales constraints

$$
d \leq H_{d}
$$

- laws of motion

$$
\begin{gathered}
H_{d}=\left(1-\delta_{H}\right) H_{d,-1}+\frac{m_{d}}{\bar{m}_{d}+\bar{m}_{f}} h \\
m_{d}=\left(1-\delta_{m}\right) m_{d,-1}+a_{d}-\phi m_{d,-1}\left(\frac{a_{d}}{m_{d,-1}}-\delta_{m}\right)^{2}
\end{gathered}
$$

- analogous constraints apply in the foreign market

Retailers: Search Technology

- Search to match with producers (at cost χv)
- meet local producer with probability π
- meet foreign producer with probability $1-\pi$
- The match gives opportunity to trade one unit of output per period
- The match dissolves with per period probability δ_{H}

Retailers: Search Technology

- Search to match with producers (at cost χv)
- meet local producer with probability $\pi=\frac{\bar{m}_{d}}{\bar{m}_{d}+\bar{m}_{f}}$
- meet foreign producer with probability $1-\pi=\frac{\bar{m}_{f}}{\bar{m}_{d}+\bar{m}_{f}}$
- The match gives opportunity to trade one unit of output per period
- The match dissolves with per period probability δ_{H}

Retailers: Equilibrium Measure h

- Measure of searching retailers h is endogenously determined by

$$
\pi V_{d}+(1-\pi) V_{f} \leq \chi v \quad \text { with ' }=\text { ' whenever } h>0
$$

where:

$$
\begin{aligned}
& V_{d}=\max \left\{0, P_{d}-p_{d}\right\}+\left(1-\delta_{H}\right) E_{t}\left[Q V_{d}^{\prime}\right] \\
& V_{f}=\max \left\{0, P_{f}-p_{f}\right\}+\left(1-\delta_{H}\right) E_{t}\left[Q V_{f}^{\prime}\right]
\end{aligned}
$$

Bargaining and Wholesale Prices

- Producer \& retailer bargain for the wholesale price p_{d} (or p_{f})
- At each history s^{t} prices satisfy the Nash Bargaining problem

$$
p_{d}\left(s^{t}\right) \in \operatorname{argmax}_{p}\left\{J_{d}\left(s^{t} ; p\right)^{\theta} V_{d}\left(s^{t} ; p\right)^{1-\theta}\right\}
$$

where

$$
J_{d}\left(s^{t} ; p\right)=\max \left\{0, p-v\left(s^{t}\right)\right\}+\left(1-\delta_{H}\right) E_{t} Q\left(s^{t+1} \mid s^{t}\right) J_{d}\left(s^{t+1} ; p_{d}\left(s^{t+1}\right)\right)
$$

- value from the match for the producer

$$
V_{d}\left(s^{t} ; p\right)=\max \left\{0, P_{d}\left(s^{t}\right)-p\right\}+\left(1-\delta_{H}\right) E_{t} Q\left(s^{t+1} \mid s^{t}\right) V_{d}\left(s^{t+1} ; p_{d}\left(s^{t+1}\right)\right)
$$

- value from the match for the retailer

Bargaining and Wholesale Prices

Proposition

The solution results in instantaneous surplus splitting

$$
\begin{gathered}
p_{d}=\theta P_{d}+(1-\theta) v \\
p_{f}=\theta P_{f}+(1-\theta) x v^{*}
\end{gathered}
$$

Bargaining and Wholesale Prices

Proposition

The solution results in instantaneous surplus splitting

$$
\begin{gathered}
p_{d}=\theta P_{d}+(1-\theta) v \\
p_{f}=\theta P_{f}+(1-\theta) x v^{*}
\end{gathered}
$$

- Intuition:
- from tomorrow on the trade surplus is split in proportion $\theta, 1-\theta$
- from today on the trade surplus is split in proportion $\theta, 1-\theta$
- Implication: today's instantaneous surplus must be split the same way

Households

- Maximize $E_{t} \sum_{t=0}^{\infty} \beta^{t} u(c, 1-l)$
subject to
- Armington aggregation

$$
c+i=G(d, f)=\left(\omega d^{\frac{\gamma-1}{\gamma}}+(1-\omega) f^{\frac{\gamma-1}{\gamma}}\right)^{\frac{\gamma}{\gamma-1}}
$$

- law of motion for physical capital

$$
k\left(s^{t}\right)=(1-\delta) k\left(s^{t-1}\right)+i
$$

- standard budget constraint under complete markets

$$
P_{d} d+P_{f} f+\int_{S} Q\left(s_{t+1} \mid s^{t}\right) b\left(s_{t+1} \mid s^{t}\right) \mu\left(d s_{t+1}\right)=b\left(s^{t}\right)+w l+r k\left(s^{t-1}\right)+\Pi
$$

- Numeraire normalization: price of final good is one

Equilibrium Feasibility

- Meeting probability consistency condition

$$
\pi=\frac{\bar{m}_{d}}{\bar{m}_{d}+\bar{m}_{f}}
$$

- Representativeness $m_{d}=\bar{m}_{d}, m_{f}=\bar{m}_{f}$
- Production feasibility $d+d^{*}+a_{d}+a_{f}+\chi h=z F(k, l)$
- Definition of equilibrium is standard

Intuition and Qualitative Features

Parameterization: Qualitative Features

- Model parameters are such that
- domestic and foreign goods close substitutes
- market shares are sluggish in the short-run
- Justified by:
- short-run vs. long-run elasticity puzzle (see Ruhl 2004)
- trade unresponsive to price changes in time-series
- trade responsive to price changes in the long-run
- pattern inconsistent with the standard theory

Primitive Shock

Positive productivity shock in domestic country

Failure of the Standard Model

Success of Our Model

Key Feature: Producers Price To Market

Markup on exported goods goes up when real exchange rate depreciates

Why Do Producers Price To Market?

$p_{x}=\theta x P_{d}^{*}+(1-\theta) v$
$x P_{d}^{*}>P_{d}$
$p_{d}=\theta P_{d}+(1-\theta) v$
$p_{x}>p_{d}-$ not arbitraged away due to marketing friction

Why $x P_{d}^{*}$ rises relative to P_{d} ?

A. Retail prices $\left(P_{d}^{*}, P_{d}\right)$ change slowly and little
B. Real exchange rate x depreciates: $x P_{d}^{*}$ goes up relative to P_{d}

Why $x P_{d}^{*}$ rises relative to P_{d} ?

A. Retail Prices Change Slowly and Little

- Retail prices depend on relative supply of domestic to foreign goods

$$
P_{d}=\omega\left[\omega+(1-\omega) \frac{f}{d}^{\frac{\gamma-1}{\gamma}}\right]^{\frac{1}{\gamma-1}}
$$

- Relative supply sluggish due to sluggish market shares in the S-R

$$
\frac{f}{d}=\frac{H_{f}}{H_{d}}=\frac{\left(1-\delta_{H}\right) H_{f,-1}+\frac{\bar{m}_{f}}{\bar{m}_{d}+\bar{m}_{f}} h}{\left(1-\delta_{H}\right) H_{d,-1}+\frac{\bar{m}_{d}}{\overline{\bar{m}_{d}+\bar{m}_{f}}} h}
$$

- Domestic and foreign goods closely substitutable (high γ)

Why $x P_{d}^{*}$ rises relatively to P_{d} ?

B. Real Exchange Rate Depreciates

- Real exchange rate determined by efficient risk sharing

$$
x=\frac{u_{c}\left(c^{*}, 1-l^{*}\right)}{u_{c}(c, 1-l)}
$$

- Shock makes consumption at home rise more then abroad
- Domestic producers have relatively larger market share at home
- at home it is relatively easy to find domestic goods
- Market shares are sluggish in the S-R due to marketing friction
- at home retailers search harder
- most of increased output stays at home

Recap

- Retail prices sluggish
- Real exchange rate depreciates: $x P_{d}^{*}>P_{d}$
- Bargaining leads to $p_{x}>p_{d}$
- Marketing frictions make $p_{x}>p_{d}$ sustainable in S-R

Contrast with the Literature

- Time varying markups in the literature (e.g. Atkeson and Burstein (2005))
- permanent shocks have permanent effects
- static friction
- same S-R and L-R dynamics
- This paper:
- permanent shocks have no long-run effects
- dynamic friction
- S-R and L-R dynamics differ

Parameterization

Quantitative Discipline

- Account for the short run vs. long run price elasticity puzzle
- trade responsive to tariff reductions in the long run
- trade unresponsive to price fluctuations in time-series

Quantitative Discipline

- Account for the short run vs. long run price elasticity puzzle
- trade responsive to tariff reductions in the long run
- price elasticity of trade high ≈ 8
- trade unresponsive to price fluctuations in time-series
- price elasticity of trade low ≈ 1

Quantitative Discipline

- Account for the short run vs. long run price elasticity puzzle
- trade responsive to tariff reductions in the long run
- price elasticity of trade high ≈ 8
- trade unresponsive to price fluctuations in time-series
- price elasticity of trade low ≈ 1
- Pins down two parameters:
- elasticity of substitution in preferences: γ

$$
\begin{aligned}
& G(d, f)=\left(\omega d^{\frac{\gamma-1}{\gamma}}+(1-\omega) f^{\frac{\gamma-1}{\gamma}}\right)^{\frac{\gamma}{\gamma-1}} \\
& -\gamma=8 \text { gives high 'long-run elasticity' }
\end{aligned}
$$

- market expansion friction: ϕ

$$
\begin{aligned}
& m_{d}=\left(1-\delta_{m}\right) m_{d,-1}+a_{d}-\phi\left(\frac{a_{d}}{m_{d,-1}}-\delta_{m}\right)^{2} m_{d,-1} \\
& -\phi \text { gives low 'short-run elasticity' }
\end{aligned}
$$

Details: Market Expansion Friction ϕ

$$
m_{d}=\left(1-\delta_{m}\right) m_{d,-1}+a_{d}-\phi m_{d,-1}\left(\frac{a_{d}}{m_{d,-1}}-\delta_{m}\right)^{2}
$$

- Set jointly with other parameters to match
- our measure of 'short-run empirical elasticity of substitution'

$$
\text { volatility ratio: } \sigma\left(\frac{D A}{f}\right) / \sigma\left(\frac{p_{f}}{P_{D A}}\right) \approx 0.81(16 \mathrm{OECD})
$$

where: $D A$ - domestic absorption in constant prices
f - imports in constant prices
p_{f} - deflator price of imports
$P_{D A}$ - deflator price of domestic absorption

- Theoretical justification: in the frictionless model volatility ratio is γ

Parameterization - Overview

- Step 1: Select the following parameters independently

$$
\gamma=7.9, \beta=0.99, \alpha=0.36, \sigma=2, \delta=0.025, \delta_{H}=0.1 \text { (arbitrary) }
$$

- Step 2: Select remaining parameters jointly

$$
\phi=4.35, \delta_{m}=0.016, \theta=0.42, \chi=1.3, \eta=0.34, \omega=0.55
$$

to hit the following targets from the data

Data Target	Value
1. Import to GDP	12%
2. Producer markups	10%
3. Volatility of p_{x} relative to x	37%
4. Volatility ratio	0.81
5. Market activities in time endowment	30%
6. Share of marketing expenditures in GDP	4.5%

Quantitative Results

Quantitative Results

- State results and contrast with standard theory
- Benchmark ($\gamma=7.9, \phi=4.35$)
- Standard model ($\gamma=0.81$, no $\phi)$
- worse statistics for international prices
- subject to long-run/short-run elasticity puzzle
- similar statistics for quantities

Results: International Prices

	Model Economies
	Benchmark
STATISTIC	$\gamma=7.9$
	DATA

A. Correlations

p_{x}, p_{m}	0.75	1.00
p_{x}, x	0.46	1.00
p_{m}, x	0.69	1.00

B. Volatility relative to x

p_{x}	0.37	0.37
p_{m}	0.61	0.63
p	0.26^{*}	0.27

Results: International Prices

	Model Economies	
	Benchmark	Standard
STATISTIC	$\gamma=7.9$	$\gamma=0.81$

A. Correlations

p_{x}, p_{m}	0.75	1.00	-1.00
p_{x}, x	0.46	1.00	-1.00
p_{m}, x	0.69	1.00	1.00

B. Volatility relative to x

p_{x}	0.37	0.37	0.13
p_{m}	0.61	0.63	1.13
p	0.26^{*}	0.27	1.26

Results: International Prices

		MoDEL ECONOMIES	
		Benchmark $\gamma=7.9$	Standard STATISTIC
	DATA	$\gamma=0.81$ A. Correlations	
p_{x}, p_{m}			
p_{x}, x	0.75	1.00	-1.00
p_{m}, x	0.46	1.00	-1.00
B. Volatility relative to x			1.00
p_{x}	0.69	1.00	
p_{m}	0.37	0.37	0.13
p	0.61	0.63	1.13

Both models fall short in terms of volatility of x !

Results: Short-Run vs Long-Run Elasticity Puzzle

		MoDEL ECONOMIES
		Benchmark $\gamma=7.9$ STATISTIC
Long-Run Elasticity	DATA	$\phi=4.35$
Volatility Ratio	7.90	7.90

Results: Short-Run vs Long-Run Elasticity Puzzle

		MoDEL ECONOMIES	
		Benchmark	Standard
	DATA	$\phi=7.9$	$\gamma=0.81$
Statistic	7.90	7.90	no ϕ
Long-Run Elasticity	0.81	0.81	0.81
Volatility Ratio			

Results: Quantities

		Model EcOnOMIES
		Benchmark $\gamma=7.9$
STATISTIC	DATA	$\phi=4.35$
A. International Comovement		
Output	0.40	0.40
Consumption	0.25	0.32
Investment	0.23	0.02
Employment	0.21	0.42
B. Volatility relative to	$G D P$	
Consumption	0.74	0.38
Investment	2.79	3.51
Employment	0.81	0.56
Net Exports	0.30	0.19

Results: Quantities

STATISTIC

Model Economies
Benchmark Standard
$\gamma=7.9 \quad \gamma=0.81$
DATA $\quad \phi=4.35 \quad$ no ϕ
A. International Comovement

Output	0.40	0.40	0.29
Consumption	0.25	0.32	0.30
Investment	0.23	0.02	0.11
Employment	0.21	0.42	0.40

B. Volatility relative to $G D P$

Consumption	0.74	0.38	0.30
Investment	2.79	3.51	3.35
Employment	0.81	0.56	0.49
Net Exports	0.30	0.19	0.15

Comparison to Disaggregated Data

- Consider our previous decomposition:

$$
p_{x}^{i} \equiv \frac{E P^{i}}{C P I} \equiv \underbrace{\frac{E P^{i}}{D P^{i}}}_{\mathrm{PTM}} \underbrace{\frac{D P^{i}}{C P I}}_{\mathrm{RPM}}
$$

- Volatility of p_{x}^{i} relative to x :
- Data : 80% from PTM
- Benchmark : 78\% from PTM
- Correlation with x :
- Data
: PTM = 0.84
$R P M=-0.14$
- Benchmark : PTM $=1.00 \quad$ RPM $=-1.00$

Comparison to Disaggregated Data

- Consider our previous decomposition:

$$
p_{x}^{i} \equiv \frac{E P^{i}}{C P I} \equiv \underbrace{\frac{E P^{i}}{D P^{i}}}_{\mathrm{PTM}} \underbrace{\frac{D P^{i}}{C P I}}_{\mathrm{RPM}}
$$

- Volatility of p_{x}^{i} relative to x :
- Data : 80% from PTM
- Benchmark : 78\% from PTM
- Standard : 0\% from PTM
- Correlation with x :
- Data
: PTM $=0.84$
$R P M=-0.14$
- Benchmark : PTM $=1.00 \quad$ RPM $=-1.00$
- Standard : PTM $=0.00 \quad$ RPM $=-1.00$

Conclusions

- Develop a model of marketing in which customers are capital
- Promising quantitatively
- accounts for aggregate and disaggregated price dynamics
- accounts for short-run vs long-run elasticity puzzle
- maintains good fit for quantities
- international comovement of GDP vs consumption (0.40 vs 0.32)

Backup Slides

Volatility Ratio in the Standard Model

- Standard model adopts Armington '69 model of trade

$$
G(d, f)=\left(\omega d^{\frac{\gamma-1}{\gamma}}+(1-\omega) f^{\frac{\gamma-1}{\gamma}}\right)^{\frac{\gamma}{\gamma-1}}
$$

d - domestic good, f - foreign good, γ - Armington elasticity

- Step 1: demand relations: $p_{d}=G_{d}(d, f), p_{f}=G_{f}(d, f)$
- Step 2: derive from demand relations

$$
\log \left(\frac{f}{d}\right)=\gamma \log \left(\frac{p_{d}}{p_{f}}\right)+\gamma \log \left(\frac{\omega_{t}}{1-\omega_{t}}\right)
$$

- Step 3: independent ω shocks + standard deviation of both sides

$$
\sigma\left[\log \left(\frac{f}{d}\right)\right] \leq \gamma \sigma\left[\log \left(\frac{p_{d}}{p_{f}}\right)\right]
$$

Details: Market Expansion Friction ϕ

- Logged quarterly data 1980-2000

	Volatility Ratio	
Country	HP-1600	HP-10
US	1.23	1.02
Canada	1.27	0.64
Japan	0.60	0.43
UK	0.65	0.61
\ldots	\ldots	\ldots
16 OECD median	0.81 $=\gamma$ Standard Model	0.83 $=\gamma$ This Model
	$=0.81$	$=1.6$

Robustness

Country	Price index used to construct p_{x}, p_{m}, x							
	CPI all-items		CPI tradables		WPI or PPI		None (nominal)	
	p_{x}, x	p_{m}, x	p_{x}, x	p_{m}, x	p_{x}, x	p_{m}, x	p_{x}, e	p_{m}, e
Belgium	0.72	0.74	0.50	0.54	0.60	0.41	0.77	0.76
Canada	0.50	0.92	0.53	0.91	0.52	0.90	0.20	0.71
France	0.61	0.66	0.46	0.53	0.57	0.69	0.71	0.72
Germany	0.50	0.85	0.06	0.76	-0.05	0.88	0.63	0.80
Italy	0.68	0.72	0.61	0.63	0.59	0.73	0.62	0.72
Japan	0.92	0.85	0.92	0.87	0.92	0.87	0.88	0.76
Netherlands	0.76	0.80	0.72	0.78	0.80	0.82	0.72	0.76
Switzerland	0.51	0.83	0.48	0.82	0.44	0.88	0.59	0.80
US	0.46	0.69	0.47	0.70	0.45	0.79	0.13	0.44
Australia	0.45	0.95	n.a	n.a	0.50	0.93	0.35	0.91
Sweden	0.60	0.74	n.a	n.a	0.28	0.28	0.54	0.67
UK	0.61	0.79	n.a	n.a	0.41	0.65	0.34	0.61
Median	0.61	0.80	0.47	0.66	0.51	0.80	0.60	0.74

