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What We Do
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1. Propose parsimonious task-based theory of automation

- automation = capital autonomously completes a step of a production process

2. Follow neoclassical blueprint: Identify task technology consistent with the Kaldor facts

4. Develop a model of IT-powered automation

- IT optimizes task load of producing task specific machines

- IT application requires completion of tasks
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BGP with constant LS possible; requires Pareto relative productivity of capital across tasks

underlying technology can seen as nongeneric because of Pareto distribution

(we show it explicitly by developing illustrative microfoundations)

Provide a task-based microfoundation of the Cobb–Douglas production

Identify key conditions for IT to be labor-share displacing
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Growth and automation: Acemoglu and Restreppo (2018)

- agnostic about the link between tasks structural change

(task space static with random churning in and out of use)

- offer different take on “horses versus humans” analogy

(humans fungible, churning diffuses productivity gains across tasks)

- different story for future: model of IT in automation vs. acceleration of trends

Foundations of task-based theory of growth: Zeira (1998, 2006)

Microfoundations of Cobb-Douglas pf: Jones (2005), Houthakker (1955):

- task-based microfoundation

- no requirement of economy-wide aggregation
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Production technology:

1. task complexity space: Q = R+ = [0,+∞)

2. increasing capital requirement function: k (q)

- labor input normalized to 1 (not an assumption)

3. measure function:

µ (S) :=

∫
S
g (q) dv,

where S ∈ B(Q), g density, v canonical Lebesgue measure

For a given partition {Qk,Ql} of Q, producing Y units of output requires
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Production technology:

1. task complexity space: Q = R+ = [0,+∞)

2. increasing capital requirement function: k (q)

- labor input normalized to 1 (not an assumption)

3. measure function:

µ (S) :=

∫
S
g (q) dv,

where S ∈ B(Q), g density, v canonical Lebesgue measure

For a given partition {Qk,Ql} of Q, producing Y units of output requires

K = Y

∫
Qk

k (q) dµ and L = Y

∫
Ql

1dµ
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Given technology vector T := (k, g), define

Y (T ;K,L) := sup

{
Ŷ ∈ R+ : ∃m.p: Ql,Qk s.t. K ≥ Ŷ

∫
Qk

k (q) dµ, L ≥ Ŷ
∫
Ql

1dµ

}
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1dµ <∞ and
∫
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k (q) dµ <∞, k is positive-valued function on at least part of the

domain, and g has full support.
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Marginal products of each factor are:

MPK =
Y

K

(
1 + k (q∗)

L

K

)−1

and MPL =
Y

L
(1−

K

Y
MPK) a.e.,

where q∗ is the factor utilization cutoff.
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Given technology vector T := (k, g), define

Y (T ;K,L) := sup

Ŷ ∈ R+ : ∃q∗∈Q s.t. K = Ŷ

q∗∫
0

k (q) dµ, L = Ŷ

∞∫
q∗

1dµ


Lemma

Suppose T1 = {k1, µ1} ∈ T and T2 = {k2, µ2} ∈ T are such that there exists a
µ1, µ2-measurable (and invertible) map f : Q → Q so that k1 ≡ k2 ◦ f−1 (a.e.) and
µ1 ≡ µ2 ◦ f−1. Then, the aggregate production function associated to each technology is
identical; that is, Y (T1;K,L) ≡ Y (T2;K,L).



Discrete example

Drozd, Taschereau-Dumouchel, Mendes Tavares Growth through Automation

Output: Hang a picture on a wall

1 move to location (coordinates) [1 labor or 2 capital]

2 take a nail from (coordinates) [1 labor or 90 capital]

3 move to location (coordinates) [1 labor or 2 capital]

4 place a nail tip against the wall (coordinates) [1 labor or 10 units of capital]

5 apply force to nail head until nailed in [1 labor or .0001 capital]

6 move to location (coordinates) [1 labor or 2 capital]

7 place picture hook on the nail [1 labor of 100 units of capital]
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Given path Tt = (kt, µt) ∈ T , allocation is a path of Ct,Kt, Lt, Yt, q∗t such that

max
Ct,Kt,Lt,Yt,q

∗
t

∞∫
0

e−ρtu (Ct) dt,

subject to
Ct + K̇t − δKt = Yt,

Lt = L̄,

where q∗t satisfies

Kt = Yt

q∗t∫
0

kt (q) dµt, Lt = Yt

∞∫
q∗t

dµt.



Definition of balanced growth path
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Definition

A balanced growth path with automation and constant factor shares (BGP) comprises an
allocation sequence: Yt = Y0eγY t, Ct = C0eγCt, Kt = K0eγKt, q∗t = q∗0e

γq∗ t and a
technology sequence Tt =

{
kt (q) = k0 (q) eγkt, gt (q) = g0 (q) eγgt

}
∈ T , such that

γY > 0,γq∗ > 0 and α ≡ Kt
Yt
MPKt is constant, where γk, γg , Y0 > 0, C0 > 0, K0 > 0,

q∗0 > 0 are scalars.

We use the standard approach of assuming “stable shape” conditions on g and k

Not an assumption: Justified by random task churning. (Will come back to this.)
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Proposition

If γk < 0 and γg − αγk > 0, BGP exists and features:

1 Technology

T0 =
{
k0 (q) = k0q

θ, g0 (q) = g0q
−ζ−1

}
,

where ζ :=
γY +γg
γq∗

, θ := γY −γk
γq∗

,

2 Growth rates: γ := γY = γC = γg − αγk.
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Proposition

If γk < 0 and γg − αγk > 0, BGP exists and features:

1 Technology

T0 =
{
k0 (q) = k0q

θ, g0 (q) = g0q
−ζ−1

}
,

where ζ :=
γY +γg
γq∗

, θ := γY −γk
γq∗

,

2 Growth rates: γ := γY = γC = γg − αγk.

Corollary

The aggregate production function along the BGP is Cobb–Douglas; that is, output Yt and
marginal products MPKt and MPLt are consistent with those implied by

Yt (K,L) = At (ZtK)α L1−α

where α = ζ
θ

and At > 0, Zt > 0 are scalars that grow at a constant rate.
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1. Standard: Y,C,K grow at same rate γ

2. Given constant growth q∗, k(q) must be CES because

α =
K

Y
MPK =

(
1 + k (q∗)

L

K

)−1

3. Given output growth, labor input must decline at rate γ because

L̄ = Y

∫ ∞
q∗

1g(q)dv



Nongeneric nature of BGP task technology
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Nongeneric nature of CD task technology
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Nongeneric to the extent that Pareto distributed capital requirements is, since

Pr (k ≥ k|k ≥ k0) = Pr (q ≥ kα|q ≥ kα0 ) =

(
k

k0

)−α
where k = k (q) = q

1
α

Example: Poisson entry of tasks with fixed productivity growth after entry:

capital productivity among active tasks grows at rate γ, 0 otherwise

normalized by that growth rate, capital requirement grows at rate γ prior to entry and
then flat

Implies Pareto distributed k:

Pr (k0e
γτ ≥ k) = Pr

(
τ ≥ γ−1 log

k

k0

)
= e
−µ
γ

log k
k0 =

(
k

k0

)−µ
γ

Churning in and out of use adds random growth that also leads to Pareto pdf
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Comment: Issue with infinite measure
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In baseline CD model measure of tasks is infinite, i.e., µ(Q) =∞

Can work instead with the following truncation technology (for q0 small enough):

T =

(
k (q) = Z−1 (q + q0)

1
α

1− α
α

, g (q) = A−1 (q + q0)−2

)



Effect of technical change on the labor share
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Framework: Representative competitive firm
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Define prices: w (wage), r (user cost of capital), P (output)

Profit maximization implies P = c (w, r)

Cost minimization implies

- firm chooses a cutoff q∗ to minimize

c (w, r) := wL+ rK

where

K =

∫ q∗

0
k (q) dµ L =

∫ ∞
q∗

1dµ
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𝑞𝑞

𝑔𝑔(𝑞𝑞)
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𝑞𝑞

𝑔𝑔(𝑞𝑞)

𝑞𝑞

𝑤𝑤

𝑔𝑔(𝑞𝑞)

𝑟𝑟𝑟𝑟(𝑞𝑞)

𝑞𝑞

𝑤𝑤 𝑞𝑞∗

Tasks assigned to capital

𝑔𝑔(𝑞𝑞)

Tasks assigned to labor

𝑟𝑟𝑟𝑟(𝑞𝑞)
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Framework: Perturbation of technology
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Define a perturbation of technology T = (k, g):

Tε := (k, g) + ε(∆k,∆g)

Evaluate the marginal effect ε at ε = 0



Framework: Labor share decomposition
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Labor share:

LSε :=
w

Pε

L

Y ε
(q∗ε ) ,

Decomposition:

d logLSε

dε
|ε=0 =

d log L
Y ε

(q∗ε )

dε
|ε=0︸ ︷︷ ︸

displacement effect DE

+ −
d logPε

dε
|ε=0︸ ︷︷ ︸

productivity effect PE

where
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Labor share:

LSε :=
w

Pε

L

Y ε
(q∗ε ) ,

Decomposition:

d logLSε

dε
|ε=0 =

d log L
Y ε

(q∗ε )

dε
|ε=0︸ ︷︷ ︸

displacement effect DE

+ −
d logPε

dε
|ε=0︸ ︷︷ ︸

productivity effect PE

where

PE = −
1

P

(
w
d L
Y

(q∗)

dq∗
+ r

dK
Y

(q∗)

dq∗

)
dq∗ε
dε
|ε=0 −

1

P

∫ q∗

0

∆g (q)

g (q)
k (q) dµ︸ ︷︷ ︸

automation

+
1

P

∫ q∗

0
r∆k (q) dµ︸ ︷︷ ︸

direct technical change effect

,
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Labor share:

LSε :=
w

Pε

L

Y ε
(q∗ε ) ,

Decomposition:

d logLSε

dε
|ε=0 =

d log L
Y ε

(q∗ε )

dε
|ε=0︸ ︷︷ ︸

displacement effect DE

+ −
d logPε

dε
|ε=0︸ ︷︷ ︸

productivity effect PE

where

PE =
1

P

∫ q∗

0
r∆k (q) dµ︸ ︷︷ ︸

direct technical change effect



Case 1: ∆k perturbation

Drozd, Taschereau-Dumouchel, Mendes Tavares Growth through Automation

𝑞𝑞1∗𝑞𝑞∗𝑤𝑤

𝑞𝑞

𝑘𝑘

+/−

𝑟𝑟𝑟𝑟(𝑞𝑞)

𝑔𝑔(𝑞𝑞)

- automation

Automation cutoff change

𝑟𝑟(𝑘𝑘 𝑞𝑞 + Δ𝑘𝑘 𝑞𝑞 )



Effect of ∆k perturbation
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Proposition

∆k-biased capital-augmenting technical progress changes the labor share by

d logLSε

dε
|ε=0 =

d log L
Y ε

(q∗ε )

dε
|ε=0︸ ︷︷ ︸

displacement effect DE

+ −
d logPε

dε
|ε=0︸ ︷︷ ︸

productivity effect PE

(a.e.)

where

DE = −h (q∗)
∆k (q∗)

k′ (q∗)

PE =
1

P

q∗∫
0

r∆k (q) dµ = h (q∗)LS

∫ q∗
0 ∆k (q) g (q) dv

k (q∗) g (q∗)

and where q∗ is the initial automation cutoff such that at that cutoff point k (q) is strictly
increasing and differentiable, S (q∗) =

∫∞
q∗ dµ is the survival function, and

h (q) := − dS(q)
dq

=
g(q)
S(q)

is the hazard rate.
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Consider marginal progress: ∆k(q∗) > 0, otherwise ∆k(q) = 0.

Proposition

∆k-biased capital-augmenting technical progress changes the labor share by

d logLSε

dε
|ε=0 =

d log L
Y ε

(q∗ε )

dε
|ε=0︸ ︷︷ ︸

displacement effect DE

+ −
d logPε

dε
|ε=0︸ ︷︷ ︸

productivity effect PE

(a.e.)

where

DE = −h (q∗)
∆k (q∗)

k′ (q∗)

PE = 0

and where q∗ is the initial automation cutoff such that at that cutoff point k (q) is strictly
increasing and differentiable, S (q∗) =

∫∞
q∗ dµ is the survival function, and

h (q) := − dS(q)
dq

=
g(q)
S(q)

is the hazard rate.
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Consider fully diffused progress: ∆k(q) = k(q).

Proposition

∆k-biased capital-augmenting technical progress changes the labor share by

d logLSε

dε
|ε=0 =

d log L
Y ε

(q∗ε )

dε
|ε=0︸ ︷︷ ︸

displacement effect DE

+ −
d logPε

dε
|ε=0︸ ︷︷ ︸

productivity effect PE

(a.e.)

where

DE = −h (q∗)
k (q∗)

k′ (q∗)

PE = h (q∗)LS

∫ q∗
0 k (q) g (q) dv

k (q∗) g (q∗)

and where q∗ is the initial automation cutoff such that at that cutoff point k (q) is strictly
increasing and differentiable, S (q∗) =

∫∞
q∗ dµ is the survival function, and

h (q) := − dS(q)
dq

=
g(q)
S(q)

is the hazard rate.
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𝑞𝑞1∗𝑞𝑞∗𝑤𝑤

𝑞𝑞

𝑘𝑘

+/−

𝑟𝑟𝑟𝑟(𝑞𝑞)

𝑔𝑔(𝑞𝑞)

- automation

Automation cutoff change
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Numerical example
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T =
(
k (q) = ..., g(q) = (q + .1)−2

)
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Case 2: ∆g perturbation
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Case 2: ∆g perturbation
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Equivalent to scattered jump in ∆k under the automation cutoff:

𝑞𝑞1∗𝑤𝑤

𝑞𝑞

𝑘𝑘

𝑔𝑔(𝑞𝑞)

- automation 𝑟𝑟(𝑘𝑘 𝑞𝑞 + Δ𝑘𝑘 𝑞𝑞 )

+/−



Effect of ∆g perturbation
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Intuition: Decline in P augments income of both factors in proportion to their share.

Proposition

∆g-biased complexity reducing technical progress changes the labor share by

d logLSε

dε
|ε=0 =

d log L
Y ε

(q∗ε )

dε
|ε=0︸ ︷︷ ︸

displacement effect DE

+ −
d logPε

dε
|ε=0︸ ︷︷ ︸

productivity effect PE

(a.e.)

where

DE =
d logS (q∗ε )

dε
|ε=0 = −h (q∗)

∫ q∗
0

w
r

∆g(q)
g(q)

dµ

g (q∗) k (q∗)

PE =
1

P

q∗∫
0

∆g (q)

g (q)
(w − rk (q)) dµ = h (q∗)LS

∫ q∗0
∆g(q)
g(q)

(
w
r
− k (q)

)
dµ

g (q∗) k (q∗)


and where q∗ is the initial automation cutoff such that at that cutoff point k (q) is strictly

increasing and differentiable, S (q∗) =
∫∞
q∗ dµ is the survival function, and

h (q) := − dS(q)
dq

=
g(q)
S(q)

is the hazard rate.
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Intuition: Decline in P augments income of both factors in proportion to their share.

Proposition

∆g-biased complexity reducing technical progress changes the labor share by

d logLSε

dε
|ε=0 =

d log L
Y ε

(q∗ε )

dε
|ε=0︸ ︷︷ ︸

displacement effect DE

+ −
d logPε

dε
|ε=0︸ ︷︷ ︸

productivity effect PE

(a.e.)

where

DE + PE = −
h (q∗)

g (q∗) k (q∗)

 q∗∫
0

∆g (q)

g (q)

(w
r

(1− LS) + k (q)LS
)
dµ

 < 0

and where q∗ is the initial automation cutoff such that at that cutoff point k (q) is strictly
increasing and differentiable, S (q∗) =

∫∞
q∗ dµ is the survival function, and

h (q) := − dS(q)
dq

=
g(q)
S(q)

is the hazard rate.
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Technical progress is generally labor-share displacing if

∆k-change is “complexity biased” (maximizes marginal effect)

small for k low

high for k high

or involves ∆g progress (software/digitization)



Model of IT in automation
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Extended setup
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Capital ⇒ machines that are task q specific

Production of a machine s.t. zero profits ⇒ endogenizes the k(q) schedule:

Pk (q) := min
{Qk,Ql}

r
∫

q̂∈Qk

k (q̂) g̃q (q̂) dv + w

∫
q̂∈Ql

g̃q (q̂) dv

 .

where Qk,Ql is a measurable partition of Q and g̃q (q̂) is density of required tasks

Technology is T̃q = {g̃q}, and in goods producing sector T = {g}
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Assumption
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Assumption

g̃q (q̂) = λ (q) g (q̂) , where g (q̂) = A−1q̂−2 and λ (q) = Z−1q
1
α .



Aggregation in extended model
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Proposition

The production function in the capital q-producing sector is Cobb–Douglas of the form:

Yq (K,L) = Zq−
1
αA

(
Z

(
c (w, r)

P

)−1 α

1− α
K

)α
L1−α,

and the endogenous capital requirement function is

k (q) = Z−1q
1
α︸ ︷︷ ︸

=λ(q)

c (w, r)

P
,

where c (w, r) is the unit cost of production in the capital producing sector associated with
the base technology T = {g}. If, in addition, g (q) = A−1q−2, the production function in
the goods sector is also Cobb–Douglas and takes the form:

Y (K,L) = A

(
Z

(
c (w, r)

P

)−1 α

1− α
K

)α
L1−α.



Model of IT in automation
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Definition

A breakthrough IT automation technology comprises:

1 A task technology T IT =
{
gIT

}
.

2 An associated strictly decreasing compression function κ : R+ → R+, such that T IT

used n ≥ 0 times “compresses” the task load in the production of machines of type
q ∈ Q by factor κ (n), implying transformed task density is g̃q,n (q̂) = κ (n)λ (q) g (q̂) .
(Units sufficiently small to justify the use of n ∈ R+.)

Assumption

κ (n) = κ0β−1n−β , where 0 < β < α−1 − 1 and κ0 > 0 are scalars.

Implies a single application of IT reduces task load by β percent.
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Definition

A breakthrough IT automation technology comprises:

1 A task technology T IT =
{
gIT

}
.

2 An associated strictly decreasing compression function κ : R+ → R+, such that T IT

used n ≥ 0 times “compresses” the task load in the production of machines of type
q ∈ Q by factor κ (n), implying transformed task density is g̃q,n (q̂) = κ (n)λ (q) g (q̂) .
(Units sufficiently small to justify the use of n ∈ R+.)

Assumption

κ (n) = κ0β−1n−β , where 0 < β < α−1 − 1 and κ0 > 0 are scalars.

Implies a single application of IT reduces task load by β percent.
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Effect of IT on capital requirement function
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Application of IT transforms capital requirement kold (q) = q
1
α to

knew (q) = min

{
q

1
α ,min

n≥0
κ (n) q

1
α + bn

}
,

where b > 0 is cost of applying IT once



Effect of IT on capital requirement function
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Application of IT transforms capital requirement kold (q) = q
1
α to

knew (q) =

{
q

1
α q ≤ qmin

Cq
1
α

1
1+β q ≥ qmin

,

where C > 0 ensures continuity

⇒ After dropping constants implies: kold (q) ∝ q
1
α → knew (q) ∝ q

1
α

1
1+β
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Effect of IT on capital requirement function
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Optimization implies breakthrough technology applied iff q ≥ qmin > 0:

𝑞𝑞

𝑘𝑘(𝑞𝑞)



Effect of IT on capital requirement function
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Optimization implies breakthrough technology applied iff q ≥ qmin > 0:

𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞

𝑘𝑘𝑛𝑛𝑛𝑛𝑛𝑛(𝑞𝑞)



Effect of Automation Breakthroughs on Production

Proposition

The post-breakthrough labor share converges to LSnew = LSold − αβ as the economy
further automates so that qmin/q∗ → 0.

Drozd, Taschereau-Dumouchel, Mendes Tavares Growth through Automation



Discussion
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Key properties that make IT labor-share displacing are

- universality - applies to most tasks

- task compression - reduces task load in proportion to the initial load

- scalability - can be scaled up when payoff is bigger

Interpretable under Brynjolfsson and Mcafee’s (2014) view of the second machine age

skip
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Brynjolfsson McAfee (2014): automation requires power and cognition
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Tools Mechanical Automation IT-Powered Automation

Past: First Machine Age 
Brynjolfsson McAfee (2014) 

Second Machine Age

Brynjolfsson McAfee (2014): automation requires power and cognition

min

{
poweri,

(
cognition

1
ρi
i + mechanism

1
ρi
i

)ρi}
≥ 1



Conclusions
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Developed theory of automation consistent with the past growth experiences

Showed the obtained task technology can be thought of as nongeneric

Provided a mechanism explaining labor-share displacing effect of IT-powered
automation
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Automation a Leading Hypothesis for Labor Share Declines
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