Pricing to Market in Business Cycle Models

Lukasz A. Drozd

Jaromir B. Nosal

Goal: Evaluation of PTM Macro Theory

Aimed at explaining ubiquitous PTM pattern in data:

$$PT \equiv \frac{\partial p_x}{\partial x} > 0$$

driven by

$$\frac{\partial (p_x/p_d)}{\partial x} > 0$$

- Structure of PTM theories:
 - Micro-founded story for: segmentation + imperfect competition
 - Applicable to large scale macro models (DSGE)

Example: Aggregate PTM in the US

Figure 1: Dynamics of Aggregate Export Price in the US.

Specific Question

Specific Question

- Are PTM mechanisms useful for policy/DSGE modeling?
 - Motivated by the very reasons why we need PTM theory:
 - 1 .Understand sources of segmentation and frictions in commodity markets on the macro level
 - 2. Get GE right to model related questions (e.g. policy)

Specific Question

- Are PTM mechanisms useful for policy/DSGE modeling?
 - Motivated by the very reasons why we need PTM theory:
 - 1. Understand sources of segmentation and frictions in commodity markets on the macro level
 - 2. Get GE right to model related questions (e.g. policy)

Details

- Look at 4 x leading theories from the literature:
 - Costly distribution based on Corsetti and Dedola (2002), also related to Kimball (1995)
 - Consumer/retail search based on Alessandria (2009)
 - Industry aggregation based on Atkeson and Burstein (2009)
 - Habit formation based on Ravn et al. (2010)
 - Possible to incorporate other work (e.g. our own)
- Propose unified framework to perform meaningful comparison
 - Do PTM frictions affect model performance in other dimensions
 - Do they work universally or only under certain (specific) conditions

Example of Policy Relevance

- PTM useful for DSGE modeling under fully endogenous price stickiness (e.g. menu cost model)
 - Endogeneity creates an immediate issue in open economy context:
 - Volatile marginal costs across countries due to volatile exchange rates → consistent with high cost of adjustment of prices to deliver quantitatively meaningful deviations from the law of one price (LOP)
 - Not so volatile within country marginal costs → consistent with moderate or low cost of adjustment of prices
- PTM resolves this issue by bringing relative international prices closer to data, enhancing the power of sticky price models to match both cross-country pricing and within country pricing

Findings

- Most frictions require special setting of model parameters, implying restriction on calibration
- Some affect model performance in other respects (quantities)
- Not all work with any types of driving shocks

Specific Findings

- Consumer search and cost of distribution models
 - Require aggregate/industry markups above 50%
- Industry aggregation model
 - Requires special setting of international elasticity
 - Adversely affects dynamics of quantities over the business cycle
- Habit model
 - Work only with special kind of shocks
 - Implies counterfactual PTM pattern for usual types of shocks

Disclaimer: What We Do Not Say!

• We do not overturn any of the findings in the original papers!

Models

Common Features (Same GE Framework)

- Basic open macro GE
 - Two symmetric countries
 - Country specific goods with CES aggregators (everywhere)
 - Home-bias
 - Productivity shocks
- On the side:
 - Other shocks, different trade costs, non-tradable goods.

Final / consumer level

$$c + i = G("D", "F")$$

Sectoral level

$$D \leftarrow "d" \quad F \leftarrow "f"$$

Industry level

"
$$d$$
" $\leftarrow zF(k,l)$

Asset trade

$$x = \frac{u_c^*}{u_c}$$

No trade in goods on the upper levels of aggregation

Trade in intermediate goods

$$u(c^*)$$

$$c^* + i^* = G("F^*", "D^*")$$

$$D^* \leftarrow \text{``}d\text{''} \quad F^* \leftarrow \text{``}f\text{''}$$

"f"
$$\leftarrow z^* F(k^*, l^*)$$

Prices (some notation for later)

- Price of consumption in each country = 1 (at all times)
- Price of composite goods P_D, P_F, P_D^st, P_F^st
- ullet Price of intermediate goods/ varieties $\left.p_d,p_f,p_d^*,p_f^*
 ight.$
- ullet Focus on export price in domestic unit $\,p_x = x p_d^*$
- Marginal cost and x-rate key source of fluctuations in prices

$$v, v^*$$

Specific Features

Frictionless Benchmark (BKK)

Trivial sectoral aggregation (same variety within country)

$$P_d = p_d$$

Perfect competition in intermediate sector (MC pricing)

$$p_d = v$$

Law of one price (no PTM)

$$p_d = x p_d^*$$

Consumer/Retailer Search Model

- Final good producers (retailers) send a measure s (s_f, s_h) to find intermediate goods at fixed cost proportional to s
- Each 's' can bring only 1 good from home or foreign mkt
- Each gets one price quote with probability q and two at 1-q
- Producers

 Bertrand or monopolistic (but don't know it)
 - a la Burdett-Judd pricing: randomization on closed interval

Key Trade-offs Pinning Down Prices

- Headquarters indifferent between buying or sending more searchers to a given country
 - Pins down the upper bound of distribution
- Trade-off between selling the good and making money on it (markup)
 - Pins down distribution and lower bound

Implications for PTM

Prices depend on markup that is local

$$p_x = v + \frac{\theta q}{1 - q} x v^* \qquad \qquad p_d = v + \frac{\theta q}{1 - q} v$$

Implies theory needs high markups to generate PTM

$$PT \equiv \frac{\partial \log(p_x)}{\partial \log(x)} = \frac{\frac{\theta q}{1-q} \frac{v^* x}{v}}{1 + \frac{\theta q}{1-q} \frac{xv^*}{v}} |_{ss} = \frac{\frac{\theta q}{1-q}}{1 + \frac{\theta q}{1-q}}$$

- How high?
 - Producer MkUp=30% → PT 24%
 - Producer MkUp=50% → PT 33%
 - Producer MkUp=100% → PT 50%

Costly Distribution Model

Sectoral aggregation of differentiated varieties

$$d = \left[\int_0^1 d^h \left(j \right)^{\frac{\varphi - 1}{\varphi}} dj \right]^{\frac{\varphi}{\varphi - 1}}, \quad f = \left[\int_0^1 f^h \left(j \right)^{\frac{\varphi - 1}{\varphi}} dj \right]^{\frac{\varphi}{\varphi - 1}}$$

• Fixed additive cost of distribution $\xi \to time$ -varying elasticity faced by monopolistic producers $\to time$ -varying markups

$$d(i) = \left(\frac{p_d(i, s^t) + \xi v(s^t)}{P_d}\right)^{-\theta} d, \quad f(i) = \left(\frac{p_f(i) + \xi v}{P_f}\right)^{-\theta} f$$

Implications for PTM

- Sensitive to micro structure how distribution cost is introduced (need Leontief or close to Leontief)
 - Only elasticity < 1 works (authors assume Leontief which is the most favorable assumption for the model)
 - Reasonable but not a prevalent feature of all models featuring a distribution sector (e.g. Eaton-Kortum model assume elasticity 1 – and then it does not work)
- Qualitatively same implications as consumer search, but quantitatively performs worse (needs even higher markups)

$$PT \equiv \frac{\partial \log(p_x)}{\partial \log(x)} = \frac{\frac{\xi}{\theta - 1} \frac{xv^*}{v}}{1 + \frac{\xi}{\theta - 1} \frac{xv^*}{v}}|_{ss} = \frac{\frac{\xi}{\theta - 1}}{1 + \frac{\xi}{\theta - 1}}$$

- REASON: Only part of producer markup affects the price

$$\frac{\theta}{\theta-1} + \frac{\xi}{\theta-1}$$

Industry Aggregation Model

'D' and 'F' perfect substitutes in final good aggregator G

$$c + i = \left[\int_0^1 y(j)^{1 - \frac{1}{\gamma}} dj \right]^{\frac{\gamma}{\gamma - 1}}$$

Monopolistic competition on industry level (firm level)

$$y(j) = \left[\sum_{k=1}^{n} (d(k,j))^{\frac{\rho-1}{\rho}} + \sum_{k=n+1}^{n_X} (f(k,j))^{\frac{\rho-1}{\rho}} \right]^{\frac{\rho}{\rho-1}}$$

Key feature: Different elasticity of aggregation on sectoral level

Final / consumer level

$$c + i = G("D", "F")$$
substitutes

Sectoral level

$$D \leftarrow "d" \quad F \leftarrow "f"$$

Home and foreign varieties produce by monopolistic producers

Industry level

"
$$d$$
" $\leftarrow zF(k,l)$

Potentially heterogeneity of productivity

Asset trade

$$x = \frac{u_c^*}{u_c}$$

No trade in goods on the upper levels of aggregation

Trade in intermediate goods

Fixed entry cost of exporting (+ variable)

$$u(c^*)$$

$$c^* + i^* = G("F^{*"}, "D^{*"})$$

$$D^* \leftarrow \text{``d''} \quad F^* \leftarrow \text{``f''}$$

"
$$f$$
" $\leftarrow z^* F(k^*, l^*)$

Industry Aggregation Model

Final good aggregation

$$c + i = \left[\int_0^1 y(j)^{1 - \frac{1}{\gamma}} dj \right]^{\frac{\gamma}{\gamma - 1}}$$

Sectoral aggregation 1

Sectoral aggregation 2

Key Assumption

Intermediate goods closer substitutes than sectoral goods, i.e.

$$\gamma > \rho$$

- Following Dornbusch (1985), implies market shares of firms matter for the perceived demand elasticity
 - always part of the low sectoral elasticity is perceived by firms,
 but how much depends on their market—share

Prices

Monopolistic exporters factor in their market share

$$p_x \equiv x P_d^* = \frac{\varepsilon_d^*}{\varepsilon_d^* - 1} (1 + \tau) v$$

where

$$\varepsilon = \left[\frac{1}{\rho}(1 - S_d^*) + \frac{1}{\gamma}S_d^*\right]^{-1}$$

$$S_d^* = \frac{P_d^* d^*}{n P_f^* f^* + n_X P_d^* d^*}$$

• Due to fixed cost of entry exporters are bigger but there are fewer of them, leading to PTM (a nice point that AB make)

Implications for PTM

Variation of markups on exported goods determined by

$$\frac{d \log(\frac{p_x}{v})}{d \log(S_d^*)} = \frac{S_d^* \left(\frac{1}{\gamma} - \frac{1}{\rho}\right)}{1 - \frac{1}{\rho} (1 - S_d^*) - \frac{1}{\gamma} S_d^*}.$$

- Hence, change in market-share S drives PTM
 - Key point: after a shock, S abroad changes more than at home due to home-bias and firm size differences (fixed cost of exporting)

Implications for PTM

- Model requires sizable movements of market shares:
 - Suppose we want to match PT=35%
 - How volatile market shares must be?
 - Best case scenario: one firm services all exports (assume this), elasticity as in AB: 8.7, and 1.5; recover std(S) from

$$PT \equiv \frac{d\log p_x}{d\log x} = \left. \frac{S_d^* \left(\frac{1}{\gamma} - \frac{1}{\rho}\right)}{1 - \frac{1}{\rho} \left(1 - S_d^*\right) - \frac{1}{\gamma} S_d^*} \right|_{SS} \frac{d\log \hat{S}_d^*}{d\log x}$$

- Implies S is 1.8x as volatile as x-rate, in data 1.2x (US)
 - factoring in the VERY low correlation of S and x and favorable assumptions we made for the model, this is too much
- Model requires home and foreign goods must be close substitutes: which is a problem on the quantity side (more about this later)

Deep Habit Model

Sectoral aggregation

$$d = \left[\int_0^1 d^h \left(j \right)^{\frac{\varphi - 1}{\varphi}} dj \right]^{\frac{\varphi}{\varphi - 1}}, \quad f = \left[\int_0^1 f^h \left(j \right)^{\frac{\varphi - 1}{\varphi}} dj \right]^{\frac{\varphi}{\varphi - 1}}$$

• where (θ negative)

$$d^{h}(j) = \frac{D(j)}{h_{d}(j)^{\theta}}$$

Habit formation through sales (deep habit)

$$h_d(j,t) = \rho h_d(j,t-1) + (1-\rho) \bar{D}(j,t)$$

Deep Habit Model

Monopolistic producers face dynamic demand

$$D(i,t) = \left(\frac{p_d(i,t)}{P_d(t)}\right)^{-\varphi} h_d(i,t-1)^{\theta(1-\varphi)} d$$

 Results in export prices that are Dixit-Stiglitz less shadow value of extra habit

$$xp_d = \frac{\phi}{\phi - 1} \left[v - (1 - \rho)\psi_d^* \right]$$

where

$$\Delta_d^* = \frac{xp_d^*}{\phi}$$
 Cost of selling output with no habit (loss of markup)

$$\psi_{d}^{*} = EQ \left[\rho \psi_{d,t+1}^{*} + \Delta_{d,t+1}^{*} \frac{\theta (1 - \varphi) D^{*} (j, t+1)}{h_{d}^{*} (i, t)} \right]$$

Implications for PTM

After persistent p. shock value of habit increases and x depreciates

$$xp_d = \frac{\phi}{\phi - 1} \left[v - (1 - \rho)\psi_d^* \right]$$

where

$$\Delta_{d}^{*} = \frac{xp_{d}^{*}}{\phi} \rightarrow \text{Cost of selling output with no habit (loss of markup)}$$

$$\psi_{d}^{*} = EQ\left[\rho\psi_{d,t+1}^{*} + \Delta_{d,t+1}^{*} \frac{\theta\left(1-\varphi\right)D^{*}\left(j,t+1\right)}{h_{d}^{*}\left(i,t\right)}\right] \rightarrow \text{value of habit}$$

- Has exactly opposite predictions for prices* to what we want
 - *Ravn et al. show that for a special type of government shocks this result can be overturned, but does not work for usual shocks

The Essence of the Problem

- Habit is accumulated by slashing markups:
 - real exchange rate depreciations generated by usual shocks make times of depreciations times when firms want to accumulate more habit for the future

Quantitative Evaluation

Calibration

- Import share for US 12%
- Standard international elasticity 1.5 (with exception of industry aggregation model – values from AB used)
- 30% producer markups (rather on high side in macro lit.)
- 30% work hours relative to time endowment
- Standard parameters and productivity shocks

When applicable

- Distribution sector of 50%
- Non-tradable sector calibrated to STAN shares and distinct shocks from data in tradable and non-tradable sector

Moments for prices

Analyze moments pertaining to decomposition

$$p_x \equiv \frac{P_X}{P} = \underbrace{\frac{P_X}{P_D}}_{p_d^x} \times \underbrace{\frac{P_D}{P}}_{p_d},$$

Table 2: Moments summarizing deviations from LOP.

Statistic	Description
$\sigma(p_d^x)/\sigma(x)$	Relative magnitude of deviations from LOP
$\sigma(p_d)/\sigma(x)$	Relative volatility of the price of tradable goods at home
$\rho(p_d^x,x)$	Correlation of dev. from LOP w/ the real ex- change rate
$\rho(p_d, x)$	Correlation of home prices w/ the real exchange rate

σ denotes the standard deviation of logged and HP filtered data; ρ denotes the correlation coefficient.

Aggregate Data for US

Figure 1: Dynamics of Aggregate Export Price in the US.

Aggregate Data for US

Table 3: Deviations from LOP in Aggregate Data.

Statistic	Value	
A. Properties of Aggregate Real Export Price		
$\sigma(p_x)/\sigma(x)$.52	
$\rho(p_x, x)$.47	
B. Deviations from LOP		
$\sigma(p_d^x)/\sigma(x)$.53	
$\rho(p_d^x, x)$.51	
C. Residual		
$\sigma(p_d)/\sigma(x)$.13	
$\rho(p_d,x)$	18	

 $[\]sigma$ denotes the standard deviation of logged and HP filtered data, ρ denotes the correlation coefficient.

Disaggregated Data: Example for Japan

Table 4: Deviations from LOP in Disaggregated Data.

Statistics	Median Value	Quartile $[Q_1, Q_3]$	bracket
A. Properties of disaggregate	ed real export prices		
$\sigma(p_{x,i})/\sigma(x)$.88	[.54, .99]	
$\rho(p_{x,i},x)$.82	[.50, .89]	
B. Deviations from LOP			
$\sigma(p_{d,i}^x)/\sigma(x)$.90	[.55, .99]	
$\rho(p_{d,i}^x, x)$.84	[.67, .89]	
C. Residual			
$\sigma(p_{d,i})/\sigma(x)$.23	[.11, .33]	
$\rho(p_{d,i},x)$	14	[25, .07]	

 $[\]sigma$ denotes the standard deviation of logged and HP filtered data, ρ denotes the correlation coefficient.

Prices

Table 5: International Prices: Comovement and Relative Volatility^a

Statistic		Predictions of the PTM Theories						
	Data^b	Frictionless Model	Consumer Search	Consumer Search*	Costly Distribution	Costly Distribution	Industry *d Aggregation	Deep Habits
A. Correlations								
p_x, x	0.47	-1.00	1.00	0.82	1.00	0.52	0.98	-0.95
p_d^x, x	0.51	0.02	1.00	0.98	1.00	0.98	1.00	-0.83
p_d, x	-0.18	-1.00	-1.00	0.11	-1.00	0.27	-1.00	-0.97
B. Standard deviati	ons							
x	3.97	0.45	0.55	3.67	0.54	1.86	0.31	0.51
relative to x								
p_x	0.52	0.16	0.18	0.26	0.04	0.83	0.23	0.36
p_d^x	0.53	0.00	0.30	0.20	0.17	0.24	0.35	0.12
p_d	0.13	0.16	0.12	0.14	0.13	0.76	0.11	0.17
C. X-Rate Pass-thn	ough							
	35%-50%	0%	23%	18%	15%	20%	40%	<0
D. Producer Marku	ps		<u> </u>					
	30%	0%	30%	22%	30%	40%	30%	30%

^aAll reported statistics are based on logged and Hodrick-Prescott filtered quarterly time series (with a smoothing parameter $\lambda = 1600$).

^bData for the US, 1984:1-2009:4.

 $^{^{}c}$ Ratio of corresponding standard deviation to the standard deviation of the real exchange rate x.

^dThe model has been calibrated to annual frequency and the statistics generated are not readily comparable to the ones listed in data column.

Prices: Some Other Issues

- Consumer search* has labor wedge shocks without this shock international correlation of employment is negative
- Industry aggregation with non-tradable goods has counterfactual predictions about volatility of tradable to nontradable price relative to x-rate – helps get PTM...
- Industry aggregation assumes best case scenario of exporter size

Quantities

Table 6: Quantities - Comovement and Relative Volatility^a

Statistic		Predictions of the PTM Theories						
	Data^b	Frictionless Model	Consumer Search	Consumer Search*	Costly Distribution	Costly Distribution*	Industry ^d Aggregation	Deep Habits
A. Correlations								
domestic with foreign	\imath							
Measured TFP ^c	0.30	0.30	0.34	0.44	0.33	0.54	0.31	0.30
GDP	0.40	0.36	0.40	0.50	0.38	0.56	0.17	0.37
Consumption	0.25	0.33	0.30	0.61	0.32	0.54	0.73	0.40
Employment	0.21	0.49	0.52	0.43	0.50	0.55	0.05	0.55
Investment	0.23	0.19	0.24	0.56	0.23	0.31	0.32	0.26
GDP with								
Consumption	0.83	0.95	0.95	1.00	0.96	0.99	0.94	0.95
Employment	0.85	0.98	0.98	0.96	0.98	0.91	0.99	0.97
Investment	0.93	0.67	0.67	0.73	0.67	0.45	0.64	0.67
Net exports	-0.49	-0.57	-0.54	-0.49	-0.56	-0.87	0.58	-0.56
Terms of trade with								
Net exports	-0.17	-0.84	-0.86	-0.86	-0.86	-0.77	0.98	-0.93
B. Standard deviations								
GDP	1.33	1.13	1.18	2.45	1.15	2.05	1.55	1.08
relative to GDP^d								
Measured TFP	0.60	0.70	0.67	0.32	0.69	0.89	0.51	0.74
Consumption	0.74	0.33	0.36	0.84	0.36	0.78	0.44	0.38
Investment	2.79	3.24	3.76	2.76	3.77	3.00	2.78	3.81
Employment	0.81	0.47	0.50	1.30	0.47	0.17	0.75	0.41
Net exports	0.30	0.14	0.13	0.04	0.13	0.11	0.21	0.13

^aAll reported statistics are based on logged and Hodrick-Prescott filtered quarterly time series (with a smoothing parameter λ = 1600).

^bUS data for the period 1980:1-2004:1.

^cCalculated using the actual national accounting formulas; due to time varying markups measured TFP slightly differs from the TFP coefficient fed into the models.

^dRatio of corresponding standard deviation to the standard deviation of GDP.

^eThe model has been calibrated to annual frequency and the statistics generated are not readily comparable to the ones listed in data column.

Conclusions

- PTM can bring relative international prices closer to data under some conditions
- But...
 - Leading theories do not universally work the same way in all contexts and impose some limitations that may be problem in specific applications
 - Our paper characterizes these restrictions / limitations