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A Relation of S to correlation coefficient

To a first order approximation, we have shown in Section A.1 that our model implies the following
dynamic system
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where
0<S<1/2

That is, note that the coefficients in (48) add up to one, and that S corresponds to the one on A* (to
a first order approximation). For simplicity, normalize the variance of symmetric shock,

var(A*) = var(A) = 1,

and note that

Define
cov (y,y")
corr(y,9) = =,
var (4)
and derive
cov (§,9%) = cov((1-8)A+SA*,(1-8)A* +54) =
= ((1-8)? +8?) cov(4, A*) +2(1 - 8)S,
and

var (§*) = var (§) = var((1 — S)A + SA*) = (1 — 8)? + 8?4+ 2(1 — S)Scorr(A, A*))

to obtain

(1-98)% +87) corr(A, A*) +2(1-8)S

corr (,9%) = (1-8)2+82+2(1 - S)Scorr(/l, /l*)



Observe that the above expression is strictly decreasing in S given Assumptions 1 and 2, since

dcorr (9,9*) B 2(1— corr(fl
oS (1 —=2(1 = corr(

A28 - 1)
A A)(1 - 5)8))

and hence that the correlation coefficient is strictly increasing in §. For detailed derivations of the
above expressions refer to our Mathematica notebook available online.
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B Alternative definition of trade in Section 2

We omit all algebraic deriviation, which can be found in the Mathematical notebook posted online.
The polar case of all trade costs being explicit; that is,
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d+ f(1+71)

In this case gravity applies globally and there is no restriction on p, although we will establish
our main result by restricting p > 1.
It is not possible to explicitly solve for 7(Z) and hence we use implicit differentiation to calculate

dr(z) T+1

dz— z((p-1)(r+ 1)z —p)

Note that the inverse of this expression is

dz _&((p—1)(r+ 1)z~ p)

dr T+1
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which implies that for all values of p we have a negative relation between trade cost and trade, and
hence the restriction introduce in the benchmark model no longer applies. The comovement coefficient
S in this case depends on both 7 and Z, and so to obtain total effect of trade changes in trade cost
must be taken explicitely into account:
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Accordingly, we define trade-comovement link £ as

dS(t,x) N 0S(r, ) dr

L=—"% or dz

As is clear from the formula for S, analyzing this model is more challenging. To make progress,
show that £ is always negative for ¢ = 0, establishing trade-comovement puzzle, and then show that
in the limit ¢ — oo it is strictly positive. Given continuity of this expression, for sufficiently high
¢, the relationship between trade and comovement must be positive. It is easy to verify by plotting
the function that it occurs for actually low values of ¢. The figure plots L for all values of Z and all
values of ¢ (for 7 = .38 and p = 10). We now prove this result formally.

Proposition 3 For ¢ = 0 we have L < 0, implying trade-comovement puzzle.



Figure 5: L as a function of z and ¢, for 7 = .38 and p = 10.

Proof.
Note that after plugging in ¢ = 0 we have:

£=2(p— 1)(r +1)2(r + 1)z 1) ((p_ 1)(71“)35_/) +1) .

The sign of this expression is determined by

sign(£) = sign(=2(p—1) ((p - 1)(rl+ Nz —p 1>)

2p— 11— (1+ 1))
(p=D(T+1)z—p
sign((p —1)(1 + 1)2 — p)
= sign(p((t+ 1)z —1) — (7 + 1)T).

)

= sign(

which is always negative. m

Proposition 4 There exists sufficiently large ¢ so that for all ¢ > ¢ we have L > 0 for any p > 1
(as a sufficient condition).

Proof. Having shown that £ < 0 for ¢ = 0, given continuity of £ with respect to ¢, it suffices to

show that the limit as ¢ — oo is strictly positive. We calculate the sign of the limit to obtain the
following evaluation

sign (q}in;o c) — sign ((r +1)(2 = 4(r +1)7) ((p . 1)(71+ 5 1))

= sign (1 + (0 — 1)(714- 1)z — P)

which is always positive for p > 1 (sufficient condition, not necessary). This is clearer by rewriting
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Figure 6: Lp = W‘T(f)%“(f) as function of elasticity p > 1 for CRRA utility function in

(36) (0 =2, ¢ = 1/3.)
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Figure 7: Lp = W\T@)g—;h(f) as function of elasticity p > 1 for CRRA utility function in

(36) (0 =5, ¢ = 1/3.)

the last term as

1
sign (1 — = ) >0
( p(l—(r4+1)z)+ (t+ 1)z
(It is possible to show that £ > 0 is increasing in ¢ for p > 1 (sufficient condition), and hence that £

crosses zero only once, but we omit it.)
]

C Non-separable utility function in Section 2

Here we characterize the forces behind the trade-comovement puzzle under the assumption that
the utility function is as in (36) (with o > 1) and ® = 0. We show that, qualitatively, the results of
Section 2 stands, although we note that this utility function alleviates the puzzle for unreasonably
high setting of bilateral trade intensity. We derive the formulas and compare the results to those in
the paper. We also prove Proposition 3 in the paper.

We begin by redoing Figure 1 from the paper for the utility function in (36) for c =2 and 0 =5
(and ¢ = 1/3). o = 2 case implies negative trade comovement link due to the effect of risk-sharing
and o = 5 implies negative trade-comovement link for 5% trade intensity and essentially zero link for
10%. Overall, non-separable utility alleviates the puzzle. Higher value of risk aversion also alleviates
the puzzle, but the improvement is small for a plausible range of values.



The decomposition considered in the paper for nonseperable utility function implies the following
values of the coefficients:
a=1  g=-(1-0z (52)
B 1 0_ 1—-2¢x
2(z(p+¢—1)—p) 2z(z(p+¢—1)—p)
Y(=2p((c —1)C+ 1) +2Z(p(c —1)C+p+(c -1 -1)¢-1)+1)

H= ACa(—po+ (p—Noz+ (0 —1)(z+1)—1 (54)

(53)

It can be verified that:

Lr = ((—1)(—4¢2*2(p—1)(o —1)¢* = (4p—3)(c = 1)C+ (p— 1)(0 — 2)) —
42(p(c = 1)C + p+ (0 = 1)(¢ = 1)¢ — 1) + 2p((0 — 1)¢ + 1) — 1))/
(4Cz (z(C—a(p+C¢—1))+po—1)+1)°

and

Lo = (CMAKC-1Dz@E((0 —1)((2p—1)o —1) +
oC(o—=3p(c—1)—po+o—C)+ (-1 —1)+o(—C)+o+(—2)+1)/
(4Cz (¢ —a(p+C¢—1))+po—1)+1)°

Taking the limit £ — 0, we obtain (27). This implies that the trade-comovement puzzle arises for low
levels of trade for all parameter values.

Figure 77 plots all the coefficient of the decomposition and compares them side-by-side between
the two specifications of the utility function. It is clear that, qualitatively, the relations are identical.
The only difference is their relative magnitude, in particular much weaker risk-sharing channel’s
connection to trade (slope of xu in the lower- left-panel). But, this turns out to be a double-edged
sword as far as trade-comovement puzzle goes. On the one hand, it reduces the direct effect of risk
sharing, but it also reduces its adverse effect on the complementarity channel through its indirect
effect, making it weaker through nfu (slope of lower- right- panel). Overall, nonseperability alleviates
the puzzle but does not resolve it, especially for empirically relevant ranges of bilateral trade intensity
(.e.g., 10% or lower). Figure 8 shows the negative region of £ for 0 =2 and o = 5.

(Derivations of the above expressions can be find in the Mathematica notebook available online.)

D Deriviation of (38)-(46)
The Lagrangian of the domestic country household is
L = ) Pr(s")p'llog Gd(s"), f(s") — B(d(s"), f(5") — (") (55)

= AG)((d(s") +p(s") f(s) (A +7) + Qs B(s™) — w(s)i(s') — B(s"))],
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Figure 8: The negative region of trade-comovement link £ for nonseperable CRRA utility
function, o = 2, = 1/3 (left panel) and o = 5,( = 1/3 (right panel).

and the Lagrangian of the foreign country household is
L* = ) Pr(s")B'log G(f*(s"),d"(s")) — @(f*(s") (")) — I"(s") (56)
= X)) f*(s") + d* ()1 +7) + Qs B (™) — p(s")w* (s)I*(s") — B*(s"))]-

The equilibrium must satisfy the first order conditions of the domestic country household Lagrangian
with respect to d(s?), f(s?),1(s'), B(s'™1), A(s?), an analogous set of conditions for the foreign country,
zero profit conditions,

w(s') = A(s)) (57)
w*(s') = A*(s"), (58)
and feasibility conditions
d(s) +d*(s")(1+71) = y(s") = A(sH)i(s") (59)
Fr)+ (Y +7) = yi(s') = A*(sHI*(s"). (60)

st = A(sh)™!
N(s') = (A(s")p(s) T,



and note that the remaining first order conditions with respect to d,f,d*,f* imply

Ollog G(d(s"), /(")) (igdu FE) U] -
Ollog G(d(s"), /(")) - ol DTN U] o sy 2)
g G+ 61) ~ ((tJ;*(St) D EE e )
Ollog G(*(s"), " (s ))8d*(s(t§*( DAEN O] o a0, 6l

and the first order conditions with respect to By, BY, imply
M) = N (). (65)

Combining with the formulas for shadow values, we obtain

Olog G(d(s") S () — B )] =1'(s" | Ollog G(S*(s').d <(>St)—<1>< I )

dd(s?)

E Business cycle implications of the quantitative model

To verify that our model accounts for the trade-comovement relationship without sacrificing the
performance in other respects, we report a set of business cycle statistics generated from our model.
The results, presented in Table 9, report median business cycle statistics from our simulated model, as
well as medians in our dataset. As the inspection of the table shows, the model matches the statistics
fairly well, at least as well as the frictionless model and often better. One notable improvement is the
prediction that output is more correlated internationally than consumption, addressing the so called
‘quantity anomaly’.3¢

F Volatility ratio across countries in our sample

Table 10 presents estimates of the volatility ratio in our sample.

G Mapping of national accounts onto quantitative
model

GDP in constant prices (steady state prices) in corresponds in our quantitative model to

Lp(Pyd+ Prf + Pyg)+ Y aipiLidi — phLpf — phLpg +vp(a), + afy) — wpvpah — zwoway,
i=FW

36Identified in Backus, Kehoe and Kydland (1992).



Table 9: business cycle Statistics: Data and Models®

Statistic Data Median® Benchmark Median Frictionless Median

A. Correlation
domestic with foreign

TFP (measured) 0.44 0.54 0.52
GDP 0.52 0.53 0.52
Consumption 0.41 0.45 0.57
Employment 0.42 0.46 0.54
Investment 0.50 0.38 0.45
GDP with
Consumption 0.71 0.92 0.93
Employment 0.60 0.81 0.99
Investment 0.71 0.98 0.98
Net exports -0.20 -0.63 -0.69
Terms of trade with
Net exports -0.31 -0.89 -0.54
B. Volatility relative to GDP
Consumption 0.79 0.28 0.26
Investment 3.04 3.90 3.66
Employment 0.71 0.83 0.52
Net exports 0.59 0.20 0.14

%Statistics based on logged and Hodrick-Prescott filtered time series with a smoothing parameter A = 1600.
bUnless otherwise noted, data column refers to the median in our sample of countries for the period
1980Q1-2011Q4.

consumption and investment in constant prices corresponds to®”

C
Lp(Pyds + Pryf + Pyigt) G (67)

t
(dtu ft, 9t)7

i
Lp(Pasdy + Prof + ngtgt)m’

and employment index corresponds to /; ;. Notice that investment in marketing does not enter the ex-
penditure side measurement of GDP. This assumption is consistent with the methodology of national
income accounting, in which expenses on R&D, marketing, advertising are all treated as intermediate

inputs — see SNA (1993) Par. 1.49, 6.149, 6.163, 6.165. While R&D expenses have been capitalized
in the U.S., this is the prevalent convention across countries in our sample.

(68)

37Consumption and investment in period zero prices are not equal to ¢ and i. The reason is that the Euler’s
Law does not apply for period zero (steady state) prices. However, quantitatively the difference is essentially
Z€ro.



Table 10: Volatility ratio in a cross-section of major industrialized

countries
Detrending method
Country Hodrick-Prescott filter (1600) Linearly detrended
Australia 0.88 0.78
Austria 2.76 2.31
Belgium 1.21 1.27
Canada 1.27 1.24
Denmark 1.17 1.52
Finland 1.67 1.31
France 0.77 0.86
Germany 1.38 1.36
Italy 1.07 1.12
Japan 0.68 0.63
Korea 0.59 0.65
the Netherlands 0.99 0.77
Norway 1.18 1.21
Portugal 1.07 1.04
Spain 1.89 1.21
Sweden 1.59 2.14
Switzerland 1.05 0.87
United Kingdom 0.90 0.67
United States 1.20 0.88
Median 1.17 1.12

H Data sources

Bilateral trade statistics were taken from International Monetary Fund, Direction Of Trade Statis-
tics, 2005. From Source OECD, Quarterly National Accounts: Gross Fixed Capital Formation (“P51:
Gross fixed capital formation”, “VOBARSA: Millions of national currency, volume estimates, OECD
reference year, annual levels, seasonally adjusted”), GDP in constant prices (“B1_GE: Gross domes-
tic product - expenditure approach”, “VOBARSA: Millions of national currency, volume estimates,
OECD reference year, annual levels, seasonally adjusted”). Our measure of labor is civilian em-
ployment or employment from Quarterly National Accounts or the International Labor Organization
(based on data availability). GDP is available from 1980Q1 to 2011Q4 for all countries in our sample.
Employment data is missing for some countries for some years (see Online Appendix for more details
what data we used). Since labor data is often not seasonally adjusted, we apply the X-12-ARIMA
Seasonal Adjustment Program from census.gov.

Nominal GDP series come from World Development Indicators, World Bank. Gross Fixed Capital
Formation, GDP in constant prices and Civil Employment series come Source OECD.org, Quarterly
National Accounts. Series for physical capital have been constructed using the perpetual inventory



method with a constant depreciation of 2.5%. Aggregate GDP for blocks of countries has been
computed from growth rates of GDP in constant prices (recent years, varies by country) weighted by
the nominal GDP of each country in 2004 (we applied the growth rates backwards).
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