GnuplotClass for FORTRAN

Documentation

Lukasz A. Drozd *
August 2018

*Standard GNU license applies.

Disclaimer and copyright

This program is free software: you can redistribute it and/or modify it un-
der the terms of the GNU General Public License as published by the Free
Software Foundation, version 3 of the License.

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY:; without even the implied warranty of MERCHANTABIL-
ITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details: http://www.gnu.org/licenses/.

http://www.gnu.org/licenses/

This document contains documentation for the GnuplotClass.

1 The basics

1.1 What is gnuplotClass?

GnuplotClass generates high quality plots directly from FORTRAN code
using command-line open-source gnuplot application. Figure [I| provides an
example of a pdf generated using gnuplotClass.

Note that gnuplot must be installed prior to using gnuplotClass. It can
be downloaded from http://www.gnuplot.info/download.html.

Two 3D plots on the same graph

R
AN
W

W
N
\

A
N
SN

N

|
| OO0 SO009
OO N O DOH= 00—
T T T T 1T T 17T 1711

Figure 1: Sample plot generated by gnuplotClass and gnuplot.

Using the class does not require knowing gnuplot syntax but it is help-
ful. Gnuplot documentation can found at http://www.gnuplot.info/docs_
5.2/Gnuplot_5.2.pdf. For a gentl(er) introduction, refer to https://www.
ethz.ch/content/dam/ethz/special-interest/gess/computational-social-science-dam/
documents/education/Spring2017/Data_science/gnuplot.pdf or P. K.
Janert. “Gnuplot in Action: Understanding Data with Graphs,” Manning
Publications Co., Greenwich, CT, USA, 2009, available free of charge at

http://www.gnuplot.info/download.html
http://www.gnuplot.info/docs_5.2/Gnuplot_5.2.pdf
http://www.gnuplot.info/docs_5.2/Gnuplot_5.2.pdf
https://www.ethz.ch/content/dam/ethz/special-interest/gess/computational-social-science-dam/documents/education/Spring2017/Data_science/gnuplot.pdf
https://www.ethz.ch/content/dam/ethz/special-interest/gess/computational-social-science-dam/documents/education/Spring2017/Data_science/gnuplot.pdf
https://www.ethz.ch/content/dam/ethz/special-interest/gess/computational-social-science-dam/documents/education/Spring2017/Data_science/gnuplot.pdf

http://www-bs2.informatik.uni-tuebingen.de/services/nilse/books/
GnuplotinAction.pdf|

1.2 How does gnuplotClass work?

The class writes data and gnuplot code during run time to text files and
issues system commands to compile these files and display output on screen
or write as pdf file using gnuplot.

1.3 What is gnuplotClass good for

GnuplotClass is designed to produce final output during run time. It is
generally not suitable to handle a very large number of plots.

1.4 Is gnuplotClass cross-platform compatible?

GnuplotClass works with any FORTRAN compiler/platform up to the
point of issuing system level commands that compile gnu code. Unfortu-
nately, issuing system commands is compiler and platform specific. This
particular implementation of the class assumes Intel Fortran Compiler (Com-
poser XE 2017 or later) and Windows operating system. It will not function
on any other platform or even older Intel Fortran compilers. However, even
in such a case, the class can be used by setting rungnu=.false. and com-
menting lines of code that issue commands to the system (run_ gnuplotxxxx
subroutines). In this mode gnuplotClass only generates files for later man-
ual compilation. Alternatively, if system commands are supported by the
compiler but they invoked differently, the class can be easily modified to
obtain full functionality by changing the lines of code in run_ gnuplotxxxx
subroutines that issue system commands.

1.5 What do I need to add gnuplotClass to my code?

GnuplotClass comprises two modules: GnuDataSeriesClass and GnuFig-
ureMakerClass. They can both be found in GnuPlotClass.f90 file. GnuFig-
ureMakerClass must be added to the program. GnuDataSeriesClass is added
automatically one GnuFigureMakerClass is added. The following illustrates
how to add the class to the main program:

4

http://www-bs2.informatik.uni-tuebingen.de/services/nilse/books/GnuplotinAction.pdf
http://www-bs2.informatik.uni-tuebingen.de/services/nilse/books/GnuplotinAction.pdf

program test

use GnuFigureMakerClass

implicit none

type (GnuFigureMaker) :: figure

type (GnuDataSeries) :: GnuSeriesY (1:4), GnuSeriesX

end program

The above code adds both modules and defines two objects that it oper-
ates on: the figure class (figure) and two data wrappers: GnuSeriesY (1:4) and
GnuSeriesX. The figure class defines the figure environment for the gnuplot
and data wrappers store user provided data for plotting and series specific
formatting information passed to gnuplot.

gnuplotClass file must be added to the FORTRAN project. The down-
loaded gnuplotClass package contains a simple f90 program (test.f90) that
demonstrates its functionality. This documentation also includes several
complete examples at the end. Output files that gnuplotClass produces are
stored in the current directory.

(1) IMPORTANT: Gnuplot must be installed and accessible from the command-
line; i.e., the path to its folder must be known to the system. Do not forget
to check path option when installing gnuplot.

2 gnuplotClass figure wrapper

GnuFigureMaker figure wrapper class must be defined by a declaration
made in main program prior to calling plotting routines. It is a wrapper class
that contains figure formatting information passed to gnuplot. To define the
wrapper, use syntax:

type (GnuFigureMaker) :: figure

The GnuFigureMaker comprises of attributes listed below. Note that
these attributes are private and cannot be accessed from the main program
other than by using an appropriate method listed below (see after ‘contains’).

type :: GnuFigureMaker

integer , private :: dimension_= 2
character (len=80), private :: title_= ""

character (len=30), private :: xlabel = "x'
character (len=30), private :: ylabel = "y
character (len=30), private :: zlabel = "z'
character (len=30), private :: datefmt_= "%Y"
integer , private ;1 xaxismode_ =1
logical , private ;. grids__=.true.
logical , private :: legend =.true.
real x8, private :: uppermarginy_ =0.
real *x8, private :: lowermarginy_ =0.
real *x8, private :: uppermarginz_ =0.
real *x8, private :: lowermarginz_ =0.
real *x8, private 11 uppermarginx_ =0.
real «x8, private :: lowermarginx_ =0.
type(LabelType), allocatable, private ;0 labels_ (@)
integer , private :: numlabels_ =0

type (ArrowType), allocatable, private ;0 arrows_ (@)
integer , private :: numarrows_ =0

type (CommandType), allocatable , private :: commands_ (:)
integer , private :: numcommands =0

contains

procedure :: setTitle, clearTitle

procedure :: setDimension

procedure :: setAxisLabels, clearAxisLabels
procedure :: setTimeFormat, clearTimeFormat
procedure :: setMargins, clearMargins
procedure :: setGrids, clearGrids

procedure :: setLegend, clearLegend

procedure :: addLabel, clearLabels

procedure :: addArrow, clearArrows

procedure :: addCommand, clearCommands
procedure :: gnuplot2D

procedure :: gnuplot2D_ multi

procedure :: gnuplot3D_auto, gnuplot3D_auto_ 2
procedure :: gnuplot3D, gnuplot3D_ 2

procedure :: gnuhistogram

end type GnuFigureMaker

The following is an example that defines a new figure class suitable for
two-dimensional plotting. The first lines of code (1-3) specify the title of the
figure and axis formatting / labeling. The following lines of code (lines 5-13)
add two custom labels (text) (labell, label2) at user specified coordinates
(xpos, ypos) and specify the angle (rotation) at which they will be displayed.
The next few lines (lines 13-16) add an arrow going from position (from__epos,
from__ypos) to position (to_xpos, to_ypos). These objects can be used to
label the plot instead of the automatically generated label by gnuplot.

(1) Note that all attributes are automatically initiated at compile time. Some
attributes are optional and when explicit specification is omitted these values
determine the program’s behavior.

call figure % setTitle(title = ’FigureTitle’)

call figure % setTimeFormat (fmt="%Y")

call figure % setAxisLabels(xaxis="year’, &

yaxis=’temperature)

call figure % addLabel(label = ’labell’, &
xpos=epoch (2000), &
ypos=5.0d0, &
rotation=0)

call figure % addLabel(label =’label2’, &
xpos=epoch (2002), &
ypos=1.0d0, &
rotation=30)

call figure % addArrow (from_ xpos=epoch(2000), &
from__ypos=0.45d0, &
to_xpos=epoch (2000), &
to_ypos=1.93d0)

The following is the complete list of attributes of the gnuFigureMaker
class and the associated methods:

1. dimension__ specifies whether the figure will be used to display a 2D
plot or a 3D plot. To modify this attribute from the main program
code, use the following syntax:

call figure % setDimension (dim=2) !for 2D plot
call figure % setDimension (dim=3) !for 3D plot

7

. title_ attribute specifies the title of the figure. The title will appear at
the top of the figure. To modify this attribute from the main program
code, use the following syntax:

call figure % setTitle(title="mytitle’)
'title is of characterx type

. xlabel_, xlabel attributes specifies axis labeling. For 3D plots zlabel
should be analogously added. To modify this attribute from the main
program code, use the following syntax:

call figure % setAxisLabels(xaxis='my—oxaxis—label’, &
yaxis='my—oxaxis—label ")
I'xasis and yaxis are of characterx type

. zaxismode__ is an automatic and hidden attribute that defines format-
ting of the ox-axis. warismode =2 means ox data is a time axis. Time
data is internally stored as Unix time [Unix time measures the number
of second since year 1970.] Refer to later section “A note on plot-
ting time series data” how to enter time data and plot time series. To
modify this attribute from the main program code, use the following
syntax:

call figure % setTimeFormat (fmt="%m/%d/%y")

'fmt string as define gnuplot documentation

Defining time formatting automatically switches xaxismode to 2. Use
to remove remove formatting information.

call figure % clearTimeFormat ()

. grids__ attribute adds grids to the figure. To add or clear grids, use:
call figure % setGrids () !adds grids (default)

and to remove grids use syntax

call figure % clearGrids() !clears grids

. legend__ specifies whether a legend should appear on the figure. To add
or clear legend, use syntax:

call figure % setLegend () !adds legend (default)

and to remove grids use

call figure % clearLegend () !clears legend

. uppermargin®_ (where *=x, y, or z) are optional attributes that add
additional margins to the figure’s range along * axis. That is, if a series
that ranges from -5 to 5 is plotted, margin can some additional space
on each side of range so that -5-lowermarginy, 5+uppermarginy range
appears in the figure. To change this attribute for 2D plots, use syntax:

call figure % setMargins (downy=23.d0, & !y—axis margin (2D)
upy=13.d0)

!where downy, upy etc. are double precision coordinates

For 3D plots, use

call figure % setMargins(downy=3.d0, & !y axis margin
upy=3.d0, &
downz=3.d0, & !z— axis margin
upz=3.d0 &
downx=3.d0, & !x— axis margin

upx=3.d0)

. labels_, arrows__ attributes contain a set of labels and arrows that are
added to the figure at a user specified coordinates (and angle in case
of labels). Position variables are of double precision and specify the
beginning of the object and in case of arrows also the end of the arrow.
Use the following syntax to add arrow and labels to the figure:

call figure % addArrow (from_xpos=1.0d0, &

from_ypos=1.0d0, &

to_xpos=1.1d0, &

to_ypos=1.1d0, &

color="+#000000 ")
!'where position variables from_ . to_ . are of double precision
I'color is optional HEX rgb code

and analogously for addLabel_:

call figure % addLabel(label="myLabelText’, &
xpos=2.0d0, &
ypos=1.0d0, &

rotation =45,
color="4#000000")
'position variables are of double precision
'rotation is integer
l'color is optional HEX rgb code

For 3D figures use addArrow3D and addLabel3D constructors that
allow to enter the third coordinate as zpos. To clear labels and arrows
use method clearArrows() and clearLabels().

In addition to the above attributes one can add any command to gnu code
using addGnuCommand method. This method works similarly as addLabel
method but only contains a single string attribute ‘command.” For example,
to redefine line 1 style, we would use:

call figure % addGnuCommand (command="set style line 1 &
It 2 1w 2 pt 3 ps 0.5)

To clear all previously defined commands, enter:

call figure % clearGnuCommands ()

3 gnuplotClass data wrapper

GnuDataSeries must be defined by a declaration made in main program
prior to calling plotting routines. It is a data wrapper class that contains user
defined data for plotting together and series-specific formatting information
passed to gnuplot. To define the wrapper, use syntax:

type (GnuDataSeries) :: GnuSeriesY (1:4), GnuSeriesX

Data for plotting must ALWAYS be defined as array, even if it is of size 1
(i.e., define GnuSeriesY(1)). Data for ox axis must be defined as a scalar.
The above declaration creates two data wrappers: a vector GnuSeriesY
of dimension (1:4) and a scalar GnuSeriesX. GnuSeriesY contains 4 series
of data for plotting and GnuSeriesX contains data for the ox-axis. The
attributes of GnuDataSeries wrapper are public and can be directly accessed
from the main program. Use provided constructors to upload the data.

type GnuDataSeries
character (len=128) it title =’

10

character (len=128) 11 unit =7’

integer :: dataType = DATA UNDEFINED TYPE
integer i1 offset =0

real*8, allocatable :: doubleValues(:)

real*4, allocatable :: singleValues(:)

integer , allocatable :: integerValues (:)

real*8, allocatable :: doubleValues2 (:,:)
real*4, allocatable :: singleValues2 (:,:)
integer , allocatable :: integerValues2 (:,:)
real*8, allocatable :: timeValues(:)

logical :: userSuppliedStyle=.false.
character (len=1) it linestyle="—"’

character (len=8) :: linecolor="#3D59AB”’
character (len=1) :: linewidth="3"

integer 11 size

integer i1 size?2

end type GnuDataSeries

4 Uploading data for plotting

Here is an example that uploads data for plotting using GnuDataSeries
object using an appropriate constructor syntax. The first line of the con-
structor defines GnuDataSeries object that stores the data, the second line
specifies the title of the series, and the third line uploads data using a FOR-
TRAN array (x(1:m,1:3), y1(1m), y2(1:n), respectively). In this case x is time
variable and a special constructor constructTSeries is used in this case. It is
an integer array of dimension 1:n,1:3. See Section “A note on plotting time
series data” for more details how to enter time data and use this construc-
tor. The other attributes are optional and contain formatting information
passed to gnuplot later. As detailed below, linecolor specifies hex rgb color
of that gnuplot should use, linewidth specifies linewidth as string integer 'n’
and linestyle specifies whether the series should be plotted as a line ‘-’, a line

.

with points “:" or with just points “.

call constructTSeries(DataSeries = GnuSeriesX, &
title = ’time’, &
series =X)

call constructSeries(DataSeries = GnuSeriesY (1), &

11

title = ’seriesl’,
series = yl,

linecolor= colorBankR (1),
linewidth="3",
linestyle="-",
offset =0

—rrree

call constructSeries(DataSeries = GnuSeriesY (2),
title = ’series2’,
series = vy2,
linecolor="#666666",
linewidth="3",
linestyle="—",
offset =0

—Rrrrerr

call constructSeries(DataSeries = GnuSeriesY (3),
title = ’seriesd’,
series = y3,
linecolor="#D95F02" |
linewidth="3",
linestyle="—-",
offset =0

—grrrree

call constructSeries(DataSeries = GnuSeriesY (4),
title = ’series4 ’,
series = y4,
linecolor="#1B9E77 " |
linewidth="3",
linestyle="-",
offset =0

—rrrerr

The following is the complete list of attributes that can be specified within
the constructor:

1. DataSeries is the GnuDataSeries object that stores the data. The ob-
ject must be previously defined using a appropriate declaration.

2. title is a string label.

3. unitis an optional string attribute that specifies individual axis labeling
for this series. It is only useful in plotting data on sub-figures, in which

12

case axis are labeled according to each series label rather than the figure
attribute. See Section on 2D plotting using sub-figures for more details.

. series is a FORTRAN array with a vector of data or a matrix for plot-
ting. For 2D plotting use FORTRAN arrays dimension (1:n) of type
single, double or integer. For time axis, as for x above, a special inte-
ger array array of dimensions (1:n,1:7) (n is number of observations)
must be used, where x(:,1)=year, x(:,2)=month, x(:,3)=day etc. This
vector can also be abbreviated and instead provide only date informa-
tion x(1:n, 1:3). See more details in Section “A note on plotting time
series data.” For 3D plotting use square arrays of dimension(1:n,1:n)
and type single, double or integer. 3D plots do not take time data.
integer :: x(nx,1:8)

real*8 :: yl(nl), y2(n2)

'nx is size of data vector x

'nl is size of data vector yl, n2 y2 etc...

[basicstyle= , style=myCustomStyle] The following is an example of input
arrays that would be consistent with the calls above. x generates dates for
ploting and y1 and y2 contain sample data.

x=0

do i=1l,nx !time data specifying year, month and day
x(1,1)=(1997+1); x(i,2)=1; x(i,3)=1

end do

do i=1,nl1 !single or double specifying year, month and day
y1(i)=6.0%i/nl
end do

do i=1,n2 !time data specifying year, month and day
y2(i)=5.0%1i/n2
end do

. dataType is automatically generated by the constructor and hidden from the

user. It specifies data type associated with the input array. If the supplied

data vector is of integer type DATA_INTEGER_TYPE is returned by the
constructor; if data vector is of realx4 type DATA__SINGLE_PRECISION_TYPE
is returned by the constructor; if DATA__DOUBLE_PRECISION__TYPE;

if data vector contains date and time values DATA TIME TYPE is re-
turned. See second “A note on plotting time series data” at the end.

13

6. linecolor is an optional string attribute that specifies HEX rgb color of the
series that is passed to gnuplot as it is plotted. Refer to gnuplot documen-
tation for details.

7. linewidth is an optional string attribute that specifies HEX rgb color of the
series that is passed to gnuplot as it is plotted. Refer to gnuplot documen-
tation for details.

8. linestyle is an optional string attribute that specifies whether gnuplot should

plot using lines, ’-’, lines and points, ’:’, or just points, .

9. offset is an optional integer attribute that specifies when given data begins
with respect to the ox-axis data. For instance, by specifying offset=2, we
tell gnuplot to forgo the first two observations and plot the given series
starting from third value on the ox axis. Note that the ox axis data must
be sufficiently long to accommodate extended size of the data that positive
offset implies.

10. size and size2 attributes are automatically generated and hidden from the
user. They contain input array sizes along each dimension.

(1) IMPORTANT: Note that derived type allows series to be of different
length, even though they are pooled together into a single object. However,
the ox axis must be the upper envelope of all sizes to enable labeling of all
data. Be careful with setting offset>0, as it makes data series effectively
longer.

() IMPORTANT: If optional SERIES style specification IS omitted auto-
matic format is used instead. This can be handy when color=.false. for the
pdf mode. gnuplot will then use lines that are dotted in varying pattern so
that they are easily distinguishable. Refer to compile time parameters of
gnuplotClass discussed at the end.

5 2D plots

Once figure and data objects have been defined, gnuplotClass is ready for
plotting.

To plot a single or multiple series of data in two dimensions on a single
figure use the method gnuplot2D. The method operates on gnuFigureMaker
object and takes dimension (1:n) GnuDataSeries vector for the oy-axis data

14

and a scalar GnuDataSeries object for the ox-axis data. For example, to
plot a 2D graph of y1 and y2 defined previously with x on the ox output
and output being written to a pdf file gnumy-fig.pdf (or gnu-cairo-my-fig.pdf
depending on settings), use the following command:

call figure % gnuplot (DataX=GnuSeriesX, &
DataY=GnuSeriesY (1:2), &
terminal="pdf’, &

label="my—fig’)
[basicstyle= , style=myCustomStyle] To display the same graph on screen, use:
call figure % gnuplot (DataX=GnuSeriesX, &
DataY=GnuSeriesY (1:2), &
terminal="screen’, &
label="my—fig’)

DataX feeds ox-axis data. DataY feeds oy-axis data to be plotted against DataX
and provides formatting information how each series should be plotted. DataY
MUST BE a dimension(1:n) vector (where n=1 for plotting a single series) and
DataX MUST be a scalar. Note that the attribute label is a string that is added
to the files that are generated by gnuplotClass as output (i.e., the file containing
data , tex file, if any, gnuplot command file, and output files). For example, in this
case final output will written to file gnumy-fig.pdf, where ‘my-fig’ part of it comes
from the label attribute. gnuplotClass by default retains all interim files with data
and gnu code used to generate the plot. gnucom|label].txt contains the code, gnu-
dat[label].txt contains data (!) IMPORTANT: In pdfcairo mode do not use label

attribute that contains characters that LaTex would classify as requiring math
mode. For example, avoid underscores ‘_ . Cairo will return an error otherwise.

() IMPORTANT: pdfcairo mode requires pdflatex be present and accessible from
the command line.

5.1 Example of a 2D plot

Here is a complete code that generates a 2D plot, writes it to a pdf file and
displays on screen. The output of this code is illustrated in Figure

program test

use GnuFigureMakerClass

type (GnuFigureMaker) :: fig0

type (GnuDataSeries) :: GnuSeriesY (1:4), GnuSeriesX

15

1 1
1994 2000 2006 2012 2018 2024 2030 2036 2042 2048

-1 1 1

time

Figure 2: A sample 2D plot of multiple series on a single figure.

integer , parameter it nl=50, nx=50
integer :: x(nx,1:8)

real*8 :: yl(nl), y2(nl), y3(nl), y4(nl)
integer :: i

x=0

do i=1,nl
x(i,1)
x(1,2)
x(i,3)

end do

(1997+1)
1
1

do i=1,nl
yl(i)=6.0%1i/nl
end do

do i=1,nl

y2(i)=5.0%1/nl
end do

16

2D multi plot

seriesl series2
6 T T T T T T T T 5 T T T T T T T T T
4.5 | |
51 1 al |
4l] 3.5 R
3L |
=3t 1 25t ,
2t |
2| 1 150 1
1L Lt 1
0.5 | |
0 | L L . L | L . 0
1994 2000 2006 2012 2018 2024 2030 2036 2042 2048 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970
year number
series3 series4

y4

I N R R)
:
|

-1 !
1970 1970
real number real*8 number

=,

Figure 3: A sample 2D plot of multiple series split to sub-figures.

do i=1,nl
y3(i)=sin (7.0xi/nl)
end do
do i=1,nl
y4(i)=8.0%1/nl
end do

I'set figure environment

I'title , date format, and axis labeling

call fig0 % setTitle(title = ’2D plot’)

call fig0 % setTimeFormat (fmt="%Y")

call fig0 % setAxisLabels(xaxis="time’, yaxis=’y’)

ladd custom labels
call fig0 % addLabel(label = ’label 17, &

17

call

call

ladd
call

xpos=epoch (2024), &
ypos=3.6d0,

rotation=27

figd % addLabel(label =

&

"label 27,

ypos=2.8d0,
rotation=20

fig0 % addLabel(label =

&
xpos=epoch (2028), &
&
)

"label 37,

ypos=0.6d0,
rotation=—30

aln arrow

&
xpos=epoch (2018), &
&
)

fig0 % addArrow (from xpos=epoch(2042),

to_xpos=epoch (2042),

&
from_ ypos=0.2d0, &
&
)

to__ypos=3.94d0

'clear automatic labels

call

fig0 % clearLegend ()

lox data
call constructTSeries(DataSeries

call

call

call

= GnuSeriesX

&

)

&

&

&
&
&
&
)

&

title = ’calendar time’, &

series = X
constructSeries (DataSeries = GnuSeriesY (1),

title = ’seriesl’,

series = yl,

linecolor= colorBankR (1)))
constructSeries (DataSeries = GnuSeriesY (2),

title = ’series2’,

series = y2,

linecolor= colorBankG (1)
constructSeries (DataSeries = GnuSeriesY (3),

title = ’series3d ’,

18

&

series = y3, &
linecolor= colorBankB (1))

I'set compile time option to use cairo terminal to generate pdfs
pdfcairo = .true.

'plot all 3 series

call fig0 % gnuplot2D(DataX=GnuSeriesX ,
DataY=GnuSeriesY (1:3),
terminal="pdf’
label="myfig 2D’

— e

call fig0 % gnuplot2D(DataX=GnuSeriesX,
DataY=GnuSeriesY (1:3) ,
terminal="screen ’
label="myfig 2D’

— e

'plot again but just the first series

call fig0 % gnuplot2D(DataX=GnuSeriesX , &
DataY=GnuSeriesY (1), &
terminal="pdf’, &
label="myfig 2D’)

call fig0 % gnuplot2D(DataX=GnuSeriesX, &
DataY=GnuSeriesY (1), &
terminal="screen ’, &
label="myfig 2D’)

end program

To plot multiple series of data in two dimensions on multiple sub-figures
use the method gnuplot2D_multi. Similarly, the method takes dimension (1:n)
GnuDataSeries vector for the oy-axis and a scalar GnuDataSeries object for the
ox axis. For example, to plot a 2D graph of x, y1 and x, y1 defined previously and
output on single window with a 2-by-2 arragement of subfigures, use syntax:

call figure % gnuplot2D_multi(fontsize=8, &
numrows=2, &
numcols=2, &
DataX=GnuSeriesXX (1:4), &
DataY=GnuSeriesY (1:4), &

19

terminal="pdf’ &
label="myfig multi’)

The additional attributes specify the fontsize, the number of rows of subfigures
and the number of columns of subfigures. Figure [3]illustrates a sample plot using
this method.

(1) IMPORTANT: In this mode gnuplotClass uses unit attribute of GnuDataSeries
to label the axis of each subplot.

6 3D plots

3D plots require a data object with a matrix as an input. In addition, data for
ox- and oy-axis can be separately provided. The remaining attributes for gnuplot
work analogously. For example, the following code uses data constructor to upload
data for 3D plotting:

l'generate data
do i=1,nl
do j=1,nl

x3D(i)=real(i)/10.
y3D(j)=real(j)/10.

xyz2(i,j)=cos(real(i)xreal(j)/(200.)) !3d matrix format

end do

end do

I'define figure

call fig2 % setTitle(title = "My first GNU 3D plot ")

call fig2 % setAxisLabels(xaxis=’x", yaxis='y’, zaxis="z")
call fig2 % setDimension (dim=3)

'upload ox, oy, and oz data

call constructSeries(DataSeries = GnuSeriesX3D, &
title = "3d", &
series = x3D)

call constructSeries(DataSeries = GnuSeriesY3D, &
title = "3d", &
series = y3D)

call constructSeries (DataSeries = GnuSeriesXYZ, &

20

title = "3d", &
series = xyz2)

The class can plot up to two oz-matrices on a single figure.oy-axis data are
provided, use the syntax

call figure % gnuplot3D (DataX=GnuSeriesX3D, &
DataY=GnuSeriesY3D, &
DataXYZ=GnuSeriesXYZ, &
terminal="pdf’, &
label="myfig’)

and if ox- and oy-axis data is not supplied, use syntax

call figure % gnuplot3D__auto(DataXYZ=GnuSeriesXYZ, &
terminal="pdf’, &
label="myfig’)
gnuplotClass can also plot two matrices on the same figure. To do that, use
syntax:

call figure % gnuplot3D_ 2 (DataX=GnuSeriesX3D , &
DataY=GnuSeriesY3D , &
DataXYZ=GnuSeriesXYZ, &
DataXYZ1=GnuSeriesXYZ1, &
terminal="pdf’, &
label="myfig’)

In this case both GnuSeriesXYZ and GnuSeriesXYZ1 are plotted in the same

figure.

(1) IMPORTANT: Offset is inactive in 3D mode. Data sizes must fully agree in
all dimensions. Time data format is not compatible with 3D plots.

6.1 Example of a 3D plot

Here is a complete code that generates a 3D plot, writes it to a pdf file and
displays it on the screen. The output of this code is illustrated in Figure [4 and [f]

program test
use GnuFigureMakerClass
implicit none

type (GnuFigureMaker) :: fig2

21

Two 3D plots on the same graph

XYZ ——
XYZ1 ——
1 -~
06 L i,
04 - 27777111
0.2 + l,;;;t,””’l:lllll””
"3 i,
04
—0.6
0.8
21 L
5
0
Figure 4: A sample 3D plot of two matrices.
type (GnuDataSeries) :: GnuSeriesXYZ, GnuSeriesXYZ1
type (GnuDataSeries) :: GnuSeriesX3D, GnuSeriesY3D
integer , parameter :: nl=50, nx=50
real x8 :: x3D(nl), y3D(nl)
real*8 ;0 xyz2(nl,nl), xyz3(nl,nl)
l'generate data
do i=1,nl
do j=1,nl
x3D(i)=real(i)/10. lox
y3D(j)=real(j)/10. loy
xyz2(i,j)=cos(real(i)xreal(j)/200.) !matrix plot
xyz3(i,j)=sin(real(i)*real(j)/100.) !matrix plot
end do
end do

22

3D plot

| OO

|
=ttt CHN Y

iy
PN

N
NN

| OO0 9099
OO DO NI 00—
LI L B e

Figure 5: A sample 3D plot of a single matrix.

I'set figure environment

call fig2 % setTitle(title = ’3D plot’)

call fig2 % setAxisLabels(xaxis=’x", yaxis=’y
call fig2 % setDimension (dim=3)

', zaxis=’'z")

'upload data series for plotting

call constructSeries(DataSeries = GnuSeriesX3D &
title = 'X", &

series = x3D)
call constructSeries(DataSeries = GnuSeriesY3D &
title ="Y", &

series = y3D)
call constructSeries(DataSeries = GnuSeriesXYZ, &
title = "XYZ", &

series = xyz2)

23

pm3d=.false. !set grid filling to off to improve visibility

'plot 2 matrices of data to pdf and on screen

call fig2 % gnuplot3D_2(DataX = GnuSeriesX3D, &
DataY = GnuSeriesY3D, &
DataXYZ= GnuSeriesXYZ, &
andDataXYZ=GnuSeriesXYZ1, &
terminal="pdf’, &
label="myfig—3D-2")

call fig2 % gnuplot3D_ 2 (DataX=GnuSeriesX3D ,
DataY=GnuSeriesY3D ,
DataXYZ=GnuSeriesXYZ,
andDataXYZ=GnuSeriesXYZ1 ,
terminal="screen ’
label="myfig—-3D-2"

—rrrere

I'same but just plot first matrix

pm3d=.true. !set grid filling to on to see the effect

call fig2 % gnuplot3D (DataX = GnuSeriesX3D , &
DataY = GnuSeriesY3D, &
DataXYZ= GnuSeriesXYZ, &
terminal="pdf’, &
label="myfig—3D-2")

call fig2 % gnuplot3D (DataX=GnuSeriesX3D , &
DataY=GnuSeriesY3D ,
DataXYZ=GnuSeriesXYZ ,

terminal=’screen’,
label="myfig—-3D-2"

— e

end program

24

3D heatmap plot

Figure 6: A sample heatmap plot.

7 Heatmap plots

To obtain a heat plot from any 3D plot add the following lines of code prior
to the plot command:

call fig3 % addCommand(’set view map’) !change view to map plot
default__palette=heat__palette !change palette to heat palette
pm3d=.true. !switch to pm3d to fill in the grids

Figure [0] illustrates a sample plot using this method.

8 Histogram plots

Use gnuplothistogram method to obtain a histogram plot of a bunch of data.
Histogram plot take a scalar GnuDataSeries object and counts the number of
occurrences with each of n intervals defined between the minimum and maximum
of the data series. Use the following call:

call figure % gnuhistogram (DataX=GnuSeriesRnd1 , &
numbars = 10, &
terminal="pdf’, &

25

frequency

Histogram

1 T T T T T T T T

seriesll
series2
0.8 1
0.6 -
04+
0.2 1
O 1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

category

Figure 7: A sample histogram plot.

label="myhist’

GnuSeriesRndl1 is GnuDataSeries scalar object containing data, numbars defines
the number of evenly spaced grid points between series minimum and maximum.
(The current version of the class does not allow to specify unevenly spaced grids.)

9 Example of a histogram plot

Here is a complete code that generates a histogram plot, writes it to a pdf file

and displays it on the screen. The output of this code is illustrated in Figure [7]

program test
use GnuFigureMakerClass
implicit none

type (GnuFigureMaker) :: fig4

type (GnuDataSeries)

integer , parameter :: nl=50
integer , parameter :: nsq=nlxnl

26

GnuSeriesRnd1(1:2), GnuSeriesRnd (1)

real :: rmatrix]1(nsq)
real :: rmatrix2(nsq)

integer , dimension (1) :: seed = (/3/)

l'generate data

call random seed (PUI=seed)
call random number(rmatrix2)
rmatrix2=rmatrix2+rmatrix2
rmatrix1=.05

I'set figure environment

call figd % setTitle(title = ’Histogram’)

call figd % setAxisLabels(xaxis=’category’, yaxis=’frequency’)
call figd % setDimension (dim=2)

l'upload data for plotting

call constructSeries(DataSeries = GnuSeriesRndl (1), &
title = "seriesl", &
series = rmatrixl)
call constructSeries(DataSeries = GnuSeriesRndl(2), &
title = "series2", &
series = rmatrix2)

l'generate first histogram with 2 series of data

call figd % gnuhistogram (DataX=GnuSeriesRnd1l ,
numbars = 10,
terminal="pdf’,
label="myhist’

— e

call figd % gnuhistogram (DataX=GnuSeriesRnd1 ,
numbars = 10,
terminal="screen ’,
label="myhist’

—rer

'plot another one with just one series of data

call constructSeries(DataSeries = GnuSeriesRnd (1), &
title = "series2", &

27

series = rmatrix2)

call figd % gnuhistogram (DataX=GnuSeriesRnd, &

numbars = 10, &
terminal="pdf’, &
label="myhist0’)

call figd % gnuhistogram (DataX=GnuSeriesRnd ,
numbars = 10,
terminal=’"screen’,
label="myhist0’

— ke

10 A note on plotting time series data

Gnuplot internally uses epoch time (Unix time). GnuplotClass constructor con-
structTSeries converts calendar time to epoch time prior to storing it in GnuDataSeries
object. Full calendar time specification involves year, month, day, difference in
minutes from the universal time, and then hour (0:24), minute and second.

To convert calendar time to epoch time, a special constructor constructTSeries
must be used. The constructor takes a vector of integers of dimension(1:n,1:7),
where n is the number of data points. Each entry 1 through 7 contains an integer
denoting year, month, day etc... The constructor can also take an abbreviated
vector (1:m,1:3) specifying date but not time. In such a case time is assumed to be
00:00:00 universal time. The 2D example above illustrates the use of time data.

To locate labels or arrows on the horizontal axis containing time data use
epoch function available in gnuplotClass. This function converts calendar time to
epoch time. Epoch function is of the format epoch(year, month, day, shift, hour,
minute, second), where everything from month onward is optional. However, if
any element of time vector is specified, it must be specified completely. See above
code how this function has been used to locate labels and arrows.

11 Compile time settings

GnuplotClass is by default set to store files and use cairo pdf terminal. How-
ever, it can also silently write plots into pdf files and used basic pdf terminal instead
of cairopdf terminal. It can also only generate files and forgo issuing system level
commands to compile them. To change these option, see parameter settings in the
GnuDataSeriesClass heading. These parameters can be modified from the main

28

code or when the are initialized within the class. Here is the list of some of main
parameters:

logical :: rungnu=.true.
'if true FORTRAN issues system command to plot figures

logical :: pdfcairo = .true.
'if true uses cairo terminal for pdf plots

logical :: color = .true.
I'if false true produces color figure in pdf cairo mode
lotherwise produces monochrome figure

logical , parameter :: stealthmode=.true.

'if true gnuplotClass leaves only final output files
I and erases all GNU codes and supporting files used
I to compile figures

'pm3d filling of grids
logical :: pm3d=.false.
'if true uses pm3d mode to fill grids

! Default palette for 3D plotting
character (len=128) :: default palette=luminance palette
I'default palette for 3D plotting and heat plotting

character (len=128) :: default colorA=colorBankB (1)
character (len=128) :: default_colorB=colorBankG (1)
I'default colors for histogram

If pdfcairo terminal is available on a given platform, gnuplotClass can use it to
generate nicer pdfs by encapsulating a raw plot in a tex code that typesets all the
labels using Latex compiler (pdflatex must be present). This results in a higher
printout quality of mathematical expressions. stealthmode = .false. keeps all
interim files that can later be used to recompile figures manually. Set to .true. to
remove all interim files and leave just final output.

12 Issues and quick fixes

1. Previously generated files on same platforms do not allow pdflatex to gener-
ate new pdf files with the same name. Use call eraseGnuFile() to clean the

29

current folder from all files that start with gnu- and have .txt, tex or pdf
extension.

30

	The basics
	What is gnuplotClass?
	How does gnuplotClass work?
	What is gnuplotClass good for
	Is gnuplotClass cross-platform compatible?
	What do I need to add gnuplotClass to my code?

	gnuplotClass figure wrapper
	gnuplotClass data wrapper
	Uploading data for plotting
	2D plots
	Example of a 2D plot

	3D plots
	Example of a 3D plot

	Heatmap plots
	Histogram plots
	Example of a histogram plot
	A note on plotting time series data
	Compile time settings
	Issues

