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Packages That Can Do it For You

• Dynare (Platform: standalone or Matlab)

— http://www.cepremap.cnrs.fr/dynare/

• Uribe and Schmitt-Grohe (2004) (Platform: Matlab)

— http://www.econ.duke.edu/%7Euribe/2nd order

• Eric Swanson (Platform: Mathematica)

— http://www.ericswanson.us/perturbation.html



Main Idea

• Find a case you know how to solve

• Rewrite the original problem as a parameterized perturbation from this
case

• Use Taylor approximation w.r.t. to the perturbation parameter to get
an approximate solution

• Verify the accurateness!



Strengths

• By far the best ‘local’ method: simple, flexible and very fast...

— Excellent packages available online

— Possible to take n—th order approximation that makes this method

applicable to problems that require at least second order preci-

sion (example: portfolio choice problems, see Heathcote and Perri

(2007) or Wincoop (2008))



How Does It Work?

• Suppose we want to find the lowest value of x that satisfies the equa-
tion

x3 − 4x+ 0.1 = 0.

• It is a cubic equation, and suppose we do not know how to solve...

• To approximate the solution, we will use the fact that we do know
how to solve

x3 − 4x = 0.

— Factoring x out, we obtain 3 solutions: -2,0,2, the lowest solution

is -2



Implementing the Perturbation Method

• Step 1: We parameterize the original problem as a perturbation from

the case we know how to solve

g(ε)3 − 4g(ε) + ε ≡ 0, all ε

where ε is a perturbation parameter, and g(ε) is the function that

returns the lowest solution.

— ε = 0 corresponds to the case we know how to solve

— ε = 0.1 corresponds to our original problem



• Step 2. Using Taylor’s Theorem, approximate g(·) by a polynomial

g(ε) ' g(0) + g0(0)ε+
1

2!
g00(0)ε2.



Caveats

The Taylor polynomial always exists, providing f is suitably differentiable.

But it need not be useful. Consider the example:

f (x) =

(
exp(−1/x2) if x > 0;
0 if x ≤ 0.

The interest is in f is at 0. It turns out that

f(0) = f 0(0) = f 00(0) = ... = f (n)(0) = ... = 0.



So, the Taylor polynomial of degree n for f around 0 is

Pn(x) = 0 + 0x+ 0x
2 + ...+ 0xn = 0,

and so for every n, the residual is f(x).

Clearly in this case, Pn tells us nothing useful about the function.

Fortunately, the family of smooth functions for which Taylor approximation

works, called analytic functions, is quite broad. Most simple functions are

analytic, and the family is closed under sums, products and compositions.

So, as long as the equation we study is an analytic function, the implicit

function g(ε) should be analytic as well. (In the above example it is the

improper reciprocal that creates a problem.)



• Step 3. Find g(0), g0(0), g00(0) using the Implicit Function Theorem

— Since we know that our equation holds identically for all ε, in

particular, the first and second derivatives at ε = 0 must be zero.

Thus,

g(0)3 − 4g(0) = 0,

3g(0)2g0(0)− 4g0(0) + 1 = 0,

6g(0)g0(0)2 + 3g00(0)g(0)2 − 4g00(0) = 0.



• From first equation we obtain

g(0) = −2,

• From second equation we obtain

g0(0) = −1
8
,

• and from third we obtain

g00(0) =
3

128
.

(Note that g(0) is solved and is then used to solve for g0(0), and both g(0)
and g0(0) are used to solve for g00(0). This is a general property. )



Trust, But Verify

• Plugging in to our Taylor expansion, we obtain the approximate solu-
tion

g(0.1) ' −2− 1
8
0.1 +

1

2

3

128
0.12 = −2.01246,

• It is always a good idea to verify the solution by evaluating the resid-
uals:

(−2.0134)3 − 4(−2.0134) + 0.1 = −0.00062.

— As we can see, it is pretty close to zero



Higher Order Approximations

• In principle, we could go as far as we want — we could take 3rd order
approximation, 4th order, etc...

• This is the strength of this method

— Need a more precise solution? Take a higher order approximation



Solving a Simple RBC Model

• As an example, we will now solve a simple RBC model

maxE0

∞X
t

βt log(ct)

subject to

ct + kt = eztkαt−1,

zt = ρzt−1 + σεt, εt˜N(0, 1).



A Note on Notation

• Note that in the formulation of the model k is shifted to period t− 1.
This way all t period variables denote variables that are known at

period t but not at period t− 1

• You will often encounter such ‘shifted’ notation when an expectation
operator is involved



Equilibrium Conditions

• The equilibrium conditions of our model are given by

ct + kt = eztkαt−1,

1

ct
= βEt

αeρzt+σεt+1kα−1t

ct+1
,

zt = ρzt−1 + σεt, εt˜N(0, 1)

which we can compactly write as

1

eztkαt−1 − kt
− βEt

αeρzt+σεt+1kα−1t

eρzt+σεt+1kαt − kt+1
= 0.



What Are We Looking For?

• This model has a recursive representation (SLP chapter 4), and so we
know that we are looking for a policy function

k(k, z;σ)

such that for all k, z, σ

1

ezkα − k(k, z;σ)
− βE

αeρz+σεkα−1

eρz+σεkα − k(k(k, z;σ), ρz + σε;σ)
= 0.

(The expectation operator E is the integral over ε, which is normally

distributed with variance 1 and mean 0.)

• Our goal is to approximate this function



Closed Form Solution?

• Turns out, this particular model has a closed form solution of the form

k(k, z;σ) = αβezkα,

where z follows AR(1) process zt = ρzt−1 + σεt, εt˜N(0, 1).

— Note that the sample paths of the key variables oscillate around

deterministic steady state

k̄ = (αβ)
1
1−α,

z̄ = 0

• Gives us opportunity to test and better understand the method



Implementing Perturbation Method

• To implement the perturbation method we need to find a case we
know how to solve

• We know how to solve for the deterministic case, which corresponds
to σ = 0

— The solution is given by

k̄ = (αβ)
1
1−α,

z̄ = 0.

• This property makes σ the natural candidate for the perturbation pa-
rameter



The Approximation Step

• The second step is to use Taylor expansion to approximate the solution
from the known one

• To find out what we are looking for, we first take the Taylor expansion
of the policy function

k(k, z, σ) ' k(k̄, 0; 0) + kk(k − k̄) + kzz + kσσ +

+
1

2
kkk(k − k̄)2 +

1

2
kzzz

2 +
1

2
kσσσ

2 +

+kkz(k − k̄)z + kkσ(k − k̄)σ + kzσzσ,

where all derivatives are evaluated at the perturbation point (k̄, 0; 0).



What Do We Want?

• From Taylor’s expansion, we note that

— First order approximation requires 4 numbers: k(k̄, 0; 0), kk, kz, kσ

— Second order approximation additionally requires 6 more numbers:

kkk, kσσ, kzz, kzσ, kzk, kkσ

• Using equilibrium conditions and the Implicit Function Thmeorem, our
task is to find these numbers

— The supporting Matlab code for this part can be download from

my website



Compact Notation

• To simplify notation, let’s define

F (k, z;σ) ≡ H(k(k(k, z;σ), ρz + σε;σ), k(k, z;σ), k, z;σ) ≡
1

ezkα − k(k, z;σ)
− βE

αeρz+σεkα−1

eρz+σεkα − k(k(k, z;σ), ρz + σε;σ)
.

• This way

— Hi denotes a partial derivative w.r.t. to the i-th argument of H

— Fk denotes total derivative of H w.r.t. k



First Order Approximation

• Need to find

k(k̄, 0; 0), kk, kz, kσ

• To obtain first order approximation, by analogy to our earlier case, we
use the fact that optimal policy must obey the following 4 equations:

(1) : F (k̄, 0; 0) = 0

(2) : Fk(k̄, 0; 0) = 0

(3) : Fz(k̄, 0; 0) = 0

(4) : Fσ(k̄, 0; 0) = 0



Results

• From (1), we obtain

k(k̄, 0; 0) = (αβ)
1
1−α

— Plugging in α = 1/2, ρ = .9 and β = .9, (1) gives

k(k̄, 0; 0) = 0.452 = 0.2025



• From (2), we obtain

H1kkkk +H2kk +H3 = 0.

— Evaluating H1,H2 and H3 for our choice of parameters, (2) gives

−16.325k2k + 44.440kk − 18.139 = 0,

and solves to

kk = 0.5,

kk = 2.22.

• But, which solution should we choose, and why do we get two? When
kk = 2.22 the system is explosive — and so on this basis we can clearly

reject this solution. In general, we will always get explosive solutions,



and will need to manually reject them. This is because the equilib-

rium system we have used to solve the model simply allows for such

solutions. These solution can only be rejected by referring to the equi-

librium conditions that we have omitted: the transversality condition,

and the non-negativity conditions... In bizarre models (e.g. external-

ities), the explosive solutions are the right solutions, and can not be

rejected! You can find examples of such cases on Lawrence Chris-

tiano’s website (see lecture notes to his ‘short course’, Northwestern

University). This will not happen in any of our applications.



• From (3), we obtain

H1kkkz + ρH1kz +H2kz +H4 = 0

— Evaluating, we have

43.17kkkz − 4.3710 = 0,

which (after plugging in for kk = 0.5) solves to

kz = 0.2025



• From (4), we obtain

H1kkkσ +H2kσ +H5 = 0

— Evaluating, we obtain H5 = 0. Given there is a unique solution to

the model, we thus must have

kσ = 0.



Properties of 1st Order Approximations

• When formulation of the model involves the term σε and Eε = 0,

then H5 = 0

— Implication: the first order approximation of policy function does

not depend on σ

• To see why, note thatH5 must take the form Expectation of {(derivative
of σε w.r.t. σ)× (some function evaluated at σ = 0, thus inde-

pendent on ε as it enters only through terms σε)}. The result is
E{ε×constant} = 0.



Remark

• Variance of the shock only enters through higher order terms (like kσσ,
but not the first order term kσ)

• So, when the policy function involves a second moment of the shock,
like in portfolio choice, first order approximation not good enough from

the get go

• Examples: Heathcote and Perri (2007) or Wincoop (2008)



Trust, But Verify

• We obtain the following approximation

k(k, z;σ) ' 0.2025 + 0.5×∆k + 0.2025×∆z

• Is this any good?

• Can check by taking first order expansion of the true policy at the
perturbation point for our choice of parameters

k(k, z;σ) = αβezkα

• Let’s do it!



• Taking the first order expansion of the true policy function around the
perturbation point, we obtain

k(k, z;σ) ' (αβ)
1
1−α + α×∆k + (αβ)

1
1−α ×∆z,

— Plugging in the parameters, we get

k(k, z;σ) ' 0.2025 + 0.5×∆k + 0.2025×∆z

— Works! This is what we got!



How Big Is Approximation Error?

• We approximate 0.45ezk0.5 by a linear function, and so the error de-
pends on the curvature of the true policy

• Can plot to see the difference, let’s plot the error in k dimension, i.e.
let’s plot

0.45k0.5 − [k̄ + 0.5(k − k̄)]



How Good Is This Approximation?

0.2250.21250.20.1875
0

-0.000125

-0.00025

-0.000375

-0.0005

x

y

x

y



How Good Is This Approximation?

• The error is of order 10−3 (when k is within the range ±20% of its

steady state value 0.2025)

— This is more than enough for most applications, but it really de-

pends on the particular application whether it is sufficient or not

• The main advantage of this method is that you can do better whenever
you need to



Second Order Approximation

• Need to additionally find

kkk, kσσ, kzz, kzσ, kzk, kkσ

having

k(k̄, 0; 0), kk, kz, kσ

from the previous step

• To find these numbers we take the second order derivatives of the
equilibrium system



• Our second order system is given by

Fkk(k̄, 0; 0) = 0

Fzz(k̄, 0; 0) = 0

Fσσ(k̄, 0; 0) = 0

Fkz(k̄, 0; 0) = 0

Fkσ(k̄, 0; 0) = 0

Fzσ(k̄, 0; 0) = 0



Properties of 2nd Order Approximations

• Property 1 : The second order system is always linear (in second order
terms)

— To see why, let’s evaluate Fkk(k̄, 0; 0) = 0 for example,

Fk(k̄, 0; 0) = kk(H1kk +H2) +H3,

Fkk(k̄, 0; 0) = kkk(H1kk +H2) + kk[

k2k(H11kk +H12) + kkH13 +

kkkH1 + kk(H21kk +H22) +H23] +

kk(H31kk +H32) +H33

Second order terms kkk, kσσ, kzz, kzσ, kzk, kkσ follow from deriva-
tives of the first order terms, and so the system is necessarily linear.
Since we know the first order terms from the previous step, we can
now use linear algebra to solve it. This is good news!



• Property 2 : All cross-terms involving σ are zero, i.e. kzσ = 0, kkσ = 0.

— Note that these terms come from taking derivatives of Fσ(k̄, 0; 0)

w.r.t. k, z. We have shown that Fσ(k̄, 0; 0) is homogenous of de-

gree 1 w.r.t. kσ, which implies kσ = 0. Also, note that we have

shown that H5 is of the form

H5 = E{ε× g(·)},
where g denotes some arbitrary function in which ε appears only

through terms σε. As a result, the derivative of H5 w.r.t. any

variable other than σ must be 0. Thus, when we take the derivative

of

Fσ(k̄, 0; 0) = H1kkkσ +H2kσ +H5,

w.r.t. to any variable other than σ, we always obtain

Fσz(k̄, 0; 0) = kσz(H1kk +H2) + kσ(...some expression...) = 0,



and therefore using kσ = 0, we have

Fσz(k̄, 0; 0) = kσz(H1kk +H2) = 0.

As a result, kσz = 0 as long as there is a unique solution to the

model. (This is not going to be the case with kσσ, which will be

different from zero in general.)



Second Order Approximation

• Need to find kkk, kσσ, kzz, kzk using

Fkk(k̄, 0; 0) = 0

Fzz(k̄, 0; 0) = 0

Fσσ(k̄, 0; 0) = 0

Fkz(k̄, 0; 0) = 0



Fkk(k̄, 0; 0) = kkk(H1kk +H2) + kk[

k2k(H11kk +H12) + kkH13 +

kkkH1 + kk(H21kk +H22) +H23] +

kk(H31kk +H32) +H33

gives kkk.



Fkz(k̄, 0; 0) = kkz(H1kk +H2) + kk[

kk(kz(H11kk + ρH11 +H12) +H14)) +

kkzH1 + kz(H21kk + ρH21 +H22) +H24] +

kz(H31kk + ρH31 +H32) +H34

gives kkz.



Fzz(k̄, 0; 0) = kzz(H1kk + ρH1 +H2) + kz[

kk((kz(H11kk + ρH11 +H12) +H4) +

kkzH1 +

ρ(kz(H11kk + ρH11 +H12) +H14) +

kz(H21kk + ρH21 +H22) +H24] +

kz(H41kk + ρH41 +H42) +H44

gives kzz.

(I cross fingers that there are no mistakes in the above derivatives. The

code posted online calculates these derivatives using Maple.)



Multivariate Case?

• If k is a vector, there is a non-trivial complication

— In the first order step, we no longer get a scalar quadratic equation

but a matrix quandratic equation (the analog of equation 2)

• Need to know how to solve a matrix quandratic equation



Example: A Multivariate Case

• Let’s say we want to solve a model in which there are 2 endogenous
state variables (size of k vector), and 1 exogenous state variables (size

of z vector), and the equilibrium system is given as a vector H (this

time of size 2) s.t. for all k, z, σ

F (k, z;σ) = H(k(k(k, z;σ), ρz + ε;σ), k(k, z;σ), k, z;σ) ≡ 0.

• Notation: Assume the first 2 arguments of H are k(k(k, z;σ), ρz +

ε;σ) arguments, the next 2 arguments are k(k, z;σ) arguments, and

so on...



Example: A Multivariate Case

• The multivariate analog to our earlier equation (2) (the derivative
w.r.t. the endogenous state variables),

H1kkkk +H2kk +H3 = 0,

is now obtained by differentiating

H1(k1[k1(k1, k2), k2(k1, k2), ...], k2[k1(k1, k2); k2(k1, k2), ...], ...) = 0,

H2(k1[k1(k1, k2), k2(k1, k2), ...], k2[k1(k1, k2), k2(k1, k2), ...], ...) = 0,

which results in the following multivariate analog of our ‘quadratic’

term ‘H1kkkk’ ...



[H1
1 , H

1
2]

"
k11k

1
1 + k12k

2
1

k21k
1
1 + k22k

2
1

#
+ ... = 0

[H1
1 ,H

1
2]

"
k11k

1
2 + k12k

2
2

k21k
1
2 + k22k

2
2

#
+ ... = 0

[H21 ,H
2
2 ]

"
k11k

1
2 + k12k

2
2

k21k
1
2 + k22k

2
2

#
+ ... = 0

[H21 ,H
2
2 ]

"
k11k

1
2 + k12k

2
2

k21k
1
2 + k22k

2
2

#
+ ... = 0

Which in matrix notation, we write as"
H1
1 H1

2
H2
1 H2

2

# "
k11 k12
k21 k22

# "
k11 k12
k21 k22

#
+... =

"
H1
1 H1

2
H2
1 H2

2

# "
k11 k12
k21 k22

#2
+... = 0



Solving a Multivariate Case

• All equations from the first order system (multivariate analog of equa-
tion 2), can be represented as a quadratic matrix equation

ψP 2 − ΓP −Θ = 0,

• By Taylor approximation of the policy function, the approximate solu-
tion is given by

k(k, z;σ) = k̄ + P ×∆k +Q×∆z.

• The non-explosive solution requires matrix P to be stable (Pn dies
out as n→∞...)

• Our task: Solve for stable matrix P



Solving for Stable Matrix P

• Let m be the number of endogenous state variables in the model,

and let’s assume that the state space is of minimal size (there are no

redundant state variables).

• Our task is to solve the quadratic matrix equation of the form

ψP 2 − ΓP −Θ = 0,

for the m×m matrix P, given m×m matrices ψ, Γ,Θ.



Theorem

• Define 2m× 2m matrices Ξ and ∆ via

Ξ =

"
Γ Θ
Im 0m,m

#
,∆ =

"
ψ 0m,m

0m,m Im

#
,

where Im is the identify matrix of size m, and where 0m,m is the

m×m matrix with only zero entries.

• Obtain 2m generalized eigenvalues and eigenvectors s of matrix Ξ

w.r.t. matrix ∆ which, by definition, are the solution to the following

equation

λ∆s = Ξs.

Matlab command for finding the generalized eigenvalues and eigen-

vectors is eig(Ξ,∆), check Matlab help. Select m eigenvalues λ1...λm



that are stable (i.e. satisfy the condition |λi| < 1), and m correspond-

ing eigenvectors s1...sm to these eigenvalues. If the model is stable,

and the state space is reduced to the minimal size, there will be ex-

actly m non-zero eigenvalues. The eigenvectors will take the form

si = [λixi, xi], for some xi ∈ Rm, and

P = ΩΛΩ−1,

is the stable solution to the matrix equation, where Ω = [x1, ..., xm]

and Λ = diag(λ1, ..., λm).



Proof

First, examine the lastm rows of equation λ∆s = Ξs. Notice that because

of the special form of Ξ,∆ the eigenvectors indeed must be of the form

si = [λixi, xi], for some xi ∈ Rm. Using the first m rows from λ∆s = Ξs

and plugging in for Ξ,∆, we obtain

ψxiλ
2
i − Γxλi −Θx = 0,

and thus in matrix form

ψΩΛ2 − ΓΩΛ−ΘΩ = 0.

Multiplying the above by Ω−1 from the right, we obtain

ψΩΛ2Ω−1 − ΓΩΛΩ−1 −Θ = 0.



Noting that

ΩΛ2Ω−1 ≡ ΩΛΩΩ−1ΛΩ−1 = P 2,

we have

ψP 2 − ΓP −Θ = 0.

Is P a stable matrix? Is it unique? The answer to both questions is yes.

The diagonal entries of Λ are all smaller than unity and so Pn can be

represented by Pn = ΩΛnΩ−1, thus Pn →n→∞ 0. Clearly, if any of the

diagonal entries in Λ was bigger or equal to 1, this is no longer true. (See

Uhlig (1997) for more details.)



In Practice

• Use the package by Schmitt-Grohe and Uribe (2004) or DYNARE

• The first package is much better for higher order approximations be-
cause it takes analytic derivatives

• Except for first order approximation, do not take numerical derivatives!
This is what Dynare++ does, and it crashes very often. You really

need analytic derivatives.

• In Fortran, compute eigenvalues using the code prepared by Paul Klein
(Schur decomposition, solab.f90). See his website and Klein and



Gomme (2006) for codes. BTW, need to paste analytic derivatives

from Matlab to Fortran. Matlab has a special function that converts

syntax to Fortran syntax. Use it.

• Refer to SLP chapter 6 for theoretical results regarding stability of

linear systems


