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Appendix A: Normalization of labor requirement

Here we sketch the argument of how our assumption that the labor requirement is fixed

across tasks can be thought of as a normalization in a more general setup with labor and

capital requirements that differ by task but are mutually independent.

Suppose there is a separate capital and labor requirement function k (q) and l (q) . Define

k̂ (q) := k (q) /l (q) . Let q be ordered so that k̂ (q) is increasing as assumed in text. Suppose

these functions are measurable and the labor requirement is independent of (relative) capi-

tal requirement; that is, knowing k̂ gives no information about l, implying for any q we have

E
{
l (q) |k̂ (q) , q ∈ I

}
= E {l (q)}, where I = [a, b] ⊂ Q is any bounded interval (we use ex-

pectation operator under a probability measure p induced on that interval; a σ−finite measure

generates a conditional probability distribution on a bounded interval).

This implies that there exists a constant C > 0 such that for any bounded interval I =

[a, b] ⊂ Q we have �
I
l (q) dµ =

�
I
Cdµ, (1)

by assumption, since l is i.i.d. with respect to q (if this is not the case it would be possible

to infer l from k̂—that is, from q since k̂ (q) is increasing—and we assume here that k̂ (q) is

strictly increasing on at least part of the domain).

Let us now normalize units of capital requirement and labor requirement by some positive

constant C > 0; that is, abusing notation a bit, (re)define k (q) := k (q) /C and l (q) :=

l (q) /C. Note that this only a change of units in which inputs are measured to ensure, by (1),

that
�
I l (q) dµ =

�
I 1dµ, as in the paper. On any bounded interval I = [a, b] we have

�
I
k (q) dµ =

�
I
k̂ (q) l (q) dµ =

�
I
k̂ (q) dµ

�
I
l (q) dµ =

�
I
k̂ (q) dµ,

where the first equality follows by definition of k̂, the second equality follows from indepen-

dence, and the last inequality follows from (1) by normalization. We have now obtained the

result by showing that inputs are the same on the redefined and normalized space as on the

original space.1 We omit the details of extending this result to B (Q), which is standard but

1It must also be the case that the information we dropped is irrelevant for the firm, which we assume is the
case. As a counterexample, suppose the firm—for whatever reason—chooses to do tasks with capital iff l ≥ 5. In
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cumbersome.

Appendix B: Omitted proofs of Lemmas 1, 2 and parts of 3

Proof of Lemma 1 Part I: We first show that technological constraints given by equation 4

in the paper are satisfied for finite inputs when a cutoff rule is used; in particular, we need to

show that (i) the constant function f (q) = 1 is µ-integrable, or equivalently g (q) is Lebesgue

integrable on interval [q∗,∞), and that (ii) k (q) is µ-integrable, or equivalently k (q) g (q) is

Lebesgue integrable on interval [0, q∗], where q∗ satisfies the requirement of the lemma. We

prove it in two steps.

Step 1: Assume q∗ < ∞ and k (q∗) > 0. To establish property (i) above, de-

fine S = [q∗,∞). By contradiction, suppose g (q) is not Lebesgue integrable on S (i.e.,�
S dµ =

�
S g (q) dv = +∞, since measurability is assumed and g is a non-negative function).

By Assumption 1 in the paper, we know there is a measurable partition of S comprising two

disjoint subsets Sl = Ql∩S,Sk = Ql∩S such that
�
Sl
dµ <∞ and

�
Sk
k (q) dµ <∞, where

{Ql,Qk} is the partition implied by Assumption 1. Since k (q) is an increasing function, we

know

∞ >

�

Sk

k (q) dµ ≥
�

Sk

k (q∗) dµ = k (q∗)

�

Sk

dµ,

which gives a contradiction by the following chain of evaluations:

∞ >

�

Sl

1dµ+

�

Sk

k (q) dµ ≥
�

Sl

1dµ+ k (q∗)

�

Sk

dµ = (1 + k (q∗))

�

S

1dµ = +∞. (2)

To establish property (ii), we note that 0 ≤ k (q) ≤ w
r
< ∞ for all q ≤ q∗, implying

r
w
k (q) < 1. This follows by the definition of cutoff q∗ in the statement of lemma. Ac-

that case the ratio k/l would not be sufficient. This is not the case in our model because the firm only maximizes
profits.
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cordingly,
� q∗

0
k (q) dµ <∞ by the following chain of evaluations:

∞ >

�

Ql

1dµ+

�

Qk

k (q) dµ ≥
�

Ql

r

w
k (q) dµ+

�

Qk

k (q) dµ

=
( r
w

+ 1
)�
Q

k (q) dµ ≥
( r
w

+ 1
)� q∗

0

k (q) dµ.

(For Step 2 below, note that the proof of property (i) actually does not depend on q∗ in the

statement of the lemma, and the proof of property (ii) does not depend on k (q∗) > 0.)

Step 2: This step covers degenerate cases: a) k (q∗) = 0 (0 ≤ q∗ < ∞) or b) q∗ = +∞

(note: a and b is impossible by Assumption 1, since by that assumption k (q) must be strictly

positive for a sufficiently large q).

Case a: By definition of the cutoff in the statement of the lemma and the fact that k (q) is

an increasing function, we have k (q) ≥ w
r
> 0 for all q > q∗, and k (q) = 0 for all q ≤ q∗ (the

strictly inequality follows here from the hypothesis that k (q∗) = 0). Accordingly, we have

established now property (i), since
� q∗

0
k (q) dµ =

� q∗
0

0dµ = 0. Recall that, as noted at the

end of Step 1 above, the argument used in Step 1 above (proof of property ii) does not require

k (q∗) > 0 as assumed in Step 1, and so property (ii) has already been proven there.

Case b: Note that q∗ = ∞ implies k (q) ≤ w
r

for all q ∈ Q by the cutoff rule stated in

the lemma. Accordingly, by Assumption 1 in the paper, and the fact that r
w
k (q) ≤ 1 for all

q ∈ Q, property (i) follows from the evaluation:

∞ >

�

Ql

1dµ+

�

Qk

k (q) dµ ≥ r

w

�

Ql

k (q) dµ+

�

Qk

k (q) dµ =
( r
w

+ 1
)�
Q

k (q) dµ.

To see that limq∗→∞
�∞
q∗

1µ = 0, we apply the argument used in Step 1 (proof of property i) to

show that
�∞
q∗∗

1µ exists (is finite) for sufficiently large q∗∗ such that k (q∗) > 0 (the existence

of such a sufficiently large and finite q∗∗ is ensured by the fact that k (q) is strictly positive on

at least part of the domain by Assumption 1 and, as noted, Step 1 (proof property i) did not

actually rely on the assumption that q∗ corresponds to the cutoff as defined in the statement of

lemma). Since for any Lebesgue integral we have limq∗→∞
�∞
q∗

1µ = 0, we have now shown
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that both constraints in equation 4 in the paper are well defined when the cutoff rule is used.2

Part II: This part establishes that the proposed cutoff rule satisfies cost minimization. By

contradiction, suppose that there exists a task partition Qk = E of a positive measure under µ

that solves the minimization problem and that is different from that implied by the cutoff rule

in the lemma (on a measurable set with a positive measure). If so, reassigning production of

tasks inA = E∩{q : q > q∗} from capital to labor must reduce the cost because rk (q) > w on

that set by definition of the cutoff rule—since we are minimizing rK+wL—and analogously

on set Ac on which we switch from using labor to capital. At least one of these sets must be

of positive measure, contradicting cost minimization and establishing the result. Q.E.D.

Proof of Lemma 2 Consider the definition of the production function (equation 5 in the

paper) with equality:

Y (K,L) := sup

Y : ∃q∗∈Q s.t. K = Y

q∗�

0

k (q) dµ, L = Y

∞�

q∗

1dµ

 . (3)

We split the proof to two steps: Step 1 shows the solution (Y ,q∗) to the above equations exists.

Step 2 shows the solution from Step 1 attains the supremum under the formulation stated in

the paper (equation 5 in the paper).

Step 1: Note that the constraint in (3) implies that q∗ satisfies

L

K
=

�∞
q∗

1dµ� q∗
0
k (q) dµ

. (4)

The integral in the numerator is finite whenever the integral in the denominator is nonzero.

We have established this property in the proof of Lemma 1 (see Part I, Step 1). The key here

is that when the denominator (or K > 0) is positive, then k (q∗) > 0, which in turn implies

the existence (finiteness) of the integral in the numerator by the arguments used in the proof of

Lemma 1 (see Part I, Step 1, proof of property i). Next, note the following basic properties of

2The proof follows the fact that the tail sum of any convergent series converges to zero, that is, if
∑∞
i=1 ai

converges, then tn =
∑∞
i=n ai →n→∞ 0, which itself is a corollary from Cauchy’s criterion of convergence

for series. Specifically, define ai =
� q∗+i
q∗+i−1 1dµ, note that

∑∞
i=1 ai =

�∞
q∗

1µ < ∞ by Theorem 5.24 from
Wheeden and Zygmund (1977) and the hypothesis, and now apply the result for series.
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the expression on the right-hand side of equation (4): i) the numerator can be made arbitrarily

small as q∗ → 0, and since the numerator is increasing in q∗, the expression goes to ∞ as

q∗ → 0; ii) the numerator goes to 0 when q∗ →∞, and since the denominator is positive and

increasing in q∗, the expression goes to 0 as q∗ → ∞ (the proof of this simple fact can be

found in footnote 2); finally, iii) note that the expression is continuous with respect to q∗ and

strictly decreasing, and by all these properties it is bijective on R+.3 Accordingly, there exists a

unique 0 < q∗ < +∞ that satisfies the two constraints (for any finite L/K > 0). Furthermore,

the supremum is attained within this set. (Without a loss we can restrict attention to a compact

domain of
(
Ŷ , q∗

)
while maximizing a continuous function f

(
Ŷ
)

= Ŷ on the set defined by

(3). Accordingly, Weierstrass extreme value theorem ensures the existence of maximum.)

Step 2: We now turn to the question of whether this solution attains the supremum under

the original definition of the production function given by equation 5 in the paper. For now

assume K > 0. (We cover K = 0 at the very end.) Suppose, by the way of contradiction that

there exists Ŷ ′ > Ŷ , q∗′ > 0 such that K > Ŷ ′
� q∗′

0
k (q) g (q) dv, L ≥ Ŷ ′

�∞
q∗′
g (v) dv (the

case K = Ŷ ′
� q∗′

0
k (q) g (q) dv, L > Ŷ ′

�∞
q∗′
g (v) dv will follow by analogy and it is omitted).

If so, the supremum of the original problem must exceed the one implied by 3, which, as we

show next, leads to a contradiction. Note that the integrals exist at q∗′ by the hypothesis (the

stated inequalities guarantee these integrals are finite). By the continuity of Lebesgue integrals

(see footnote 3), we can pick ∆q∗′ > 0 such thatK > Ŷ
� q∗′+∆q∗′

0
k (q) g (q) dv, which implies

that there exists ∆Ŷ > 0 such that K =
(
Ŷ ′ + ∆Ŷ ′

) � q∗′+∆q∗′

0
k (q) g (q) dv (by continuity

of the expression on the right). We must ensure that the integral in the last expression exists

(is finite). Let k̄ := sup[q∗′,q∗′+∆q∗′]⊂Q k (q), which, note, must be a finite number. (If this was

not the case, we would have had k (q∗∗) = +∞ for any q∗∗ > q∗′ + ∆q∗′—simply because

k (q) is increasing and it is defined everywhere onQ.) The following chain of evaluations now

shows that the integral in question exists as long as
�∞
q∗′
g (v) dv exists, which is the case by

the hypothesis:

∞ > k̄

∞�

q∗′

g (q) dq > k̄

q∗′+∆q∗′�

q∗′

g (q) dq >

q∗′+∆q∗′�

q∗′

k (q) g (q) dq.

3Lacking a textbook reference, we prove it in the Online Appendix E.
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Returning to the main argument, the fact that g has full support implies L >

Ŷ ′
�∞
q∗′+∆q∗′

1g (v) dv by continuity of Lebesgue integrals.4 But, if so, there exists Ŷ ′′ =

Ŷ ′ + ∆Ŷ ′′, for some 0 < ∆Ŷ ′′ < ∆Ŷ ′, such that K ≥ Ŷ ′′
� q∗′+∆q∗′

0
k (q) g (q) dv and we

maintain L = Ŷ ′′
�∞
q∗′+∆q∗′

g (v) dv, which is a contradiction of the fact that Ŷ ′ > Ŷ . Ŷ ′ =∞

is not feasible because k is strictly positive on at least part of the domain (see Assumption 1

in the paper). The remaining case is easy to eliminate by instead considering “−∆q∗′” and we

omit the details. If K = 0, note, there is not much to prove because q∗ = 0. Q.E.D.

Proof of Lemma 3 (omitted parts from the paper) Part I shows existence and Part II

derives the formulas and the proof is in the paper. Part I: The proof builds on the proof of

Lemma 2. We have established in that lemma that the production function can be obtained

from (3) and that a unique q∗ exists that satisfies (4). By the second constraint then, we know

that Y (K,L) , q∗ satisfy

L = Y (K,L)µ ([q∗,∞)) , (5)

which gives

q∗ (Y, L) = S−1

(
L

Y

)
, (6)

where S (q) := µ ([q,∞)) is the survival function. The survival function under the assump-

tions made in the paper, by previous lemmas, is well-defined, positively-valued, continuous,

strictly decreasing (because g has full support), and hence invertible and differentiable almost

everywhere with a strictly negative derivative.5 Accordingly, S−1
(
L
Y

)
exists and is differen-

tiable a.e., since for functions of a single variable we have [f−1]′ (x) = 1
f ′(f−1(x))

, which is

well defined as long as f ′ is nonzero (which it is). This implies that the derivative of q∗ (Y, L)

in (6) is well defined (a.e.). The production function Y (K,L) can be recovered from capital

usage equation of Lemma 2, which gives the identity:

f (Y (K,L) , K) := Y (K,L)

q∗(Y (K,L),L)�

0

k (q) dµ−K ≡ 0.

4As in footnote 3.
5See Theorem 7.21 (p. 111) in Wheeden and Zygmund (1977).
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The implicit function theorem ensures that at the points of differentiability of q∗ (Y, L) the

partial derivative YK (K,L) is well defined as long as the partial derivative fY (Y,K) :=

∂f(Y,K)
∂Y

is non-vanishing (nonzero) and both fY , fK are well defined—which is readily implied

by the above functional form. The existence of the partial derivative with respect to L can be

shown analogously and we omit it. Part II: In the appendix of the paper.

Appendix C: Growth properties of domain-truncated CD technology

Here we show how to obtain approximately balanced growth from the domain-truncated

Cobb-Douglas task technology (TCD) of the form:

T TCDq0
=

(
Q = [q0,∞), k (q) = Z−1q

1
α

1− α
α

, g (q) = A−1q−2

)
, (7)

where q0 > 0. (For convenience, we modify domainQ instead of adding q0 to effectively also

shift the task domain.)

In this case the density function can be normalized by a constant to yield the standard

Pareto probability density, implying that the implied measure µ is finite, and hence T TCDq0
has

probabilistic representation. We will show that this technology gives rise to approximately

balanced growth and its predictions can be made statistically indistinguishable from the bal-

anced growth path of the CD economy by picking sufficiently small q0 given a finite sample

of data.

To derive the aggregate production function implied by TCD technology, we follow the

steps in Example 1 of the paper. If q∗ > q0, we obtain the following equation for the represen-

tative isoquant:
K

Y

(
L

Y

)
:= (AZ)−1

((
A
L

Y

)1− 1
α

− q
1
α
−1

0

)
. (8)

As expected, q0 → 0 implies the production function is CD. However, the constraint q∗ ≥ q0

may be binding, and in that case the above equation does not apply because Lemma 2 does

not apply. Accordingly, we use the original definition of the production function and obtain

Y = ALq0, K = 0 when
(
AL
Y

)1− 1
α ≤ q

1
α
−1

0 , or equivalently L
Y
≥ (Aq0)−1, which implies

q∗ = q0 is binding. Figure 1 illustrates the obtained isoquant.
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𝐾𝐾/𝑌𝑌

𝐿𝐿/𝑌𝑌

𝐾𝐾/𝑌𝑌 = 0
𝐴𝐴−1𝑞𝑞0−1

𝑇𝑇0𝑇𝑇𝑇𝑇𝑇𝑇 ≡ 𝑇𝑇𝑇𝑇𝑇𝑇

𝑇𝑇𝑞𝑞0
𝑇𝑇𝑇𝑇𝑇𝑇

Figure 1: Representative isoquant of the production function implied by the T TCDq0
technology.

Notes: The figure plots the representative isoquant of the production function implied by task technology TTCDq0
(in text). The arrows

indicate uniform convergence to CD isoquant as q0 → 0. On the flat portion, capital is not used in production and output is produced
exclusively using labor.

The key property of this isoquant is that it uniformly converges to the CD isoquant (q0 = 0)

both when q0 → 0 and AZ →∞. This follows from the fact that we can bound the difference

between the two isoquants by the expression:

sup
L/Y≥0

|K
Y

(
L

Y
; q0

)
− K

Y

(
L

Y
; 0

)
| < sup

L/Y≥0

1

α−1 − 1
(AZ)−1 q

1
α
−1

0 ,

where K
Y

(
L
Y

; q0

)
is the representative isoquant of the truncated CD technology (q0 > 0) and

K
Y

(
L
Y

; 0
)

is the representative isoquant of the CD technology. This bound follows from the fact

that the “gap” between the two isoquants is decreasing with respect to L
Y

above L
Y
≥ (Aq0)−1,

as shown in the figure, and thus it is bounded by the “gap” at L
Y

= (Aq0)−1, which itself

narrows with q0 → ∞. This property does not imply that the production function converges

uniformly, but it does imply that the production function converges uniformly on an arbitrarily

bounded range of inputs. As we show next, after dividing each variable by the growth rate of

technology, the model implies that the vector field on the phase space for normalized capital

and consumption uniformly converges to that of the CD model.

Growth properties of domain-truncated CD task technology

Assume that Zt and At grow at constant and strictly positive rates γZ > 0, γA > 0,

respectively. Assume that q0 is sufficiently small so that capital is used in equilibrium; that

is, the economy stays on the increasing portion of the isoquant in Figure 1. We return to this
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at the end. To focus on how the growth path relates to the balanced growth path under CD

technology, divide all variables except for labor by the balanced growth factor (AtZ
α
t )

1
1−α of

the CD model. For example, after this normalization, Kt becomes (AtZ
α
t )

1
1−α K̄t, Ct becomes

(AtZ
α
t )

1
1−α C̄t, and so on and so forth. Since A and Z both grow at strictly positive rates

γA, γZ , (AtZ
α
t )

1
1−α grows at rate γ can be easily calculated by differentiating this expression

with respect to time. The normalized allocation solves the planning problem of the form:

max
(Ct,Kt)t

∞�

0

e−(ρ+γ)tu
(
C̄t
)

(9)

subject to

C̄t + ˙̄Kt + γK̄t − δK̄t = Ȳt, (10)

given K̄0, and C̄t ≥ 0, K̄t ≥ 0, where, by (8), output Ȳt solves6

Ȳt = Ȳt
(
K̄t, L̄; q0

)
:=

(
K̄t

X̄t

(
Ȳt, L̄; q0

))α

L̄1−α, (11)

and where

X̄t

(
Ȳt, L̄t; q0

)
:= 1− (AtZt)

−1

(
L̄

Ȳt

) 1
α
−1

q
1
α
−1

0 . (12)

We refer to the above model as the TCD model while referring to the model in text as the CD

model (which is the above but with q0 = 0).

The fixed point that defines Ȳt exists and is unique—as long as q0 is not too high, which

we assume. This follows from plugging (12) into (11) and noting the opposing monotonicity

of the left- and right-hand side of the resulting equation with respect to Ȳ . Second, the above

equation implies that the production function defined by (11) converges to the CD production

function uniformly on any bounded domain, in particular for ¯̄K ≥ K̄ ≥ K̄0 > 0 (L̄ fixed).7

The addition of an upper bound constraint ¯̄K is without a loss given that a sufficiently high

6See the Online Appendix B for an explicit derivation of the above formula.
7After plugging in from (11) to (12), it can be shown that for sufficiently low q0 and K̄ ≥ K0, we can always

find a unique X that solves the resulting equation. Plugging in that X to (11), we obtain unique value of output.
In addition, X converges to 1 with both q0 → 0 and AtZt → ∞ for any Ȳt > 0 (uniformly after imposing a
lower bound on Ȳt).

10



level of capital is unsustainable by the assumptions that consumption must be nonnegative

and depreciation is a fraction of capital stock. The lower bound follows from our focus on a

positive growth equilibrium. We return to this at the end of the section.

Equation (10) implies that the growth rate of capital γK̄,t is

γK̄,t
(
K̄t, C̄t; q0

)
:=

˙̄
tK

K̄t

=
Ȳt
(
K̄t, L̄; q0

)
+ (δ − γ)K̄t − C̄t
K̄t

, (13)

and hence, by the observations made, it converges uniformly to the growth rate at q0 = 0 on

the bounded domain ¯̄K ≥ K̄ ≥ K̄0, both with respect to q0 → 0 and/or t→∞ (by which we

mean AtZt →∞). As a result, the growth rate of capital converges uniformly to the CD case,

implying

sup
¯̄K≥K̄≥K̄0,C̄≥0

|γK̄,t
(
K̄, C̄; q0

)
− γK̄,t

(
K̄, C̄; 0

)
| →q0→0,t→∞ 0.

The Euler condition for the planning problem implies that the growth rate of consumption γC̄,t

is

γC̄,t
(
K̄t, C̄t; q0

)
:=

˙̄Ct
C̄t

=
1

σ

(
MPKt

(
K̄t, L̄; q0

)
− δ − ρ

)
, (14)

which, after basic manipulations detailed in the Online Appendix D below, can be linked to

MPKt

(
K̄t, L̄; 0

)
as follows

MPKt

(
K̄t, L̄; q0

)
=
(
X̄t

(
Yt, L̄; q0

)α−1
MPKt

(
K̄t, L̄; 0

)−1 − (AtZt)
−1 q

1
α
−1

0

)−1

, (15)

where

MPKt

(
K̄t, L̄; 0

)
= α

(
L̄

Ȳ
(
K̄t, L̄; 0

)) 1
α
−1

.

Accordingly, we similarly obtain uniform convergence of consumption growth rate:

sup
K̄≥K0

|γC̄,t
(
K̄, C̄; q0

)
− γC̄,t

(
K̄, C̄; 0

)
| →q0→0,AtZt→∞ 0.

C andK are the two variables that define the phase space of the dynamic system that solves

(9). As a result, as shown in Figure 2, the vector field for this system is a perturbed version of
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�𝐾𝐾

̅𝐶𝐶

0

̇�̅�𝐶𝑡𝑡=0

�̇𝐾𝐾𝑡𝑡=0
Saddle point

�𝐾𝐾0

̅𝐶𝐶0(0)
̅𝐶𝐶0(𝑞𝑞0)

Figure 2: Phase diagram of the growth model with q0 > 0 versus q0 = 0 (dotted line).
Notes: The figure shows a phase diagram implied by the growth model featuring truncated Cobb-Douglas technology (q0 > 0, solid lines)

versus exact Cobb-Douglas technology featuring infinite measure (q0 = 0, dotted lines). As shown in text, for K > K0 all objects of the
phase diagram exhibit uniform convergence to those associated with exact Cobb-Douglas technology, both with respect to q0 → 0 as well
as time t → ∞ (equivalently AtZt → ∞). Consequently, the optimal time path of capital and consumption along the saddle path is also
similar as shown.

the one associated with the CD technology, with that perturbation uniformly vanishing with

respect to both q0 → 0 and AtZt → ∞. Since qualitatively the phase diagram is standard,

the solution that satisfies the usual transversality condition and nonnegativity conditions is the

saddle path towards the intersection of the loci of points that imply stationary consumption

and capital in the long-run. By the continuous dependence on the initial data theorem for

differential equation, then, the time paths of each variable approach the CD case, and in the

limit converge towards the common saddle point.

Let us now return to the omitted issue of capital being used along the growth path.

When K = 0, note, the TCD technology implies that MPK =
(

1
α
− 1
)−1

AZq
1
α
−1

0 ,

which together with the Euler equation implies that capital will be accumulated as long as

MPK =
(

1
α
− 1
)−1

AZq
1
α
−1

0 > ρ + δ + σγA, since consumption grows at rate γA when

capital is not used nor accumulated (K = 0), and in that case consumption equals output, i.e.,

C = Y = AL̄q0. We can ensure this condition holds for q0 sufficiently low given A0Z0 as

assumed, and because AZ grows at a strictly positive rate, we can be sure this condition will

hold thereafter.

The global transitional dynamics implied by the TCD model is more complicated but it is

appealing in its own right. In particular, this model can generate a stylized industrial revolution

along the lines of Hansen and Prescott (2002) at low levels of capital and productivity Z. This
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happens when q0 is not too low and AZ keeps on growing so that eventually capital starts

being used in production (which gives rise to a stylized industrial revolution). The model

can also generate a poverty trap when growth in Z comes from learning-by-doing externality

associated with using capital as in Romer (1986).

Appendix D. Supplementary derivations for Online Appendix C

Production function for TCD task technology normalized by balanced growth factor:

Plugging in Kt = (AtZ
α
t )

1
1−α K̄t, Yt= (AtZ

α
t )

1
1−α Ȳt, Ct = (AtZ

α
t )

1
1−α C̄t to the equation for

TCD isoquant in text, we obtain

(AtZ
α
t )

1
1−α K̄t

(AtZα
t )

1
1−α Ȳt

= (AtZt)
−1

(At L̄

(AtZα
t )

1
1−α Ȳt

)1− 1
α

− q
1
α
−1

0

 .

Simplifying terms and pulling out the first term in the last bracket, while raising both sides to

the power α, we get

(
AtZt

K̄t

Ȳt

)α
=

(
At

L̄

(AtZα
t )

1
1−α Ȳt

)α−1
1− q

1
α
−1

0

(
AtL̄

(AtZα
t )

1
1−α Ȳt

) 1
α
−1
α

,

which, given the fact that

At

(AtZα
t )

1
1−α

=
A

1− 1
1−α

t

Z
α

1−α
t

=
A
− α

1−α
t

Z
α

1−α
t

= (AtZt)
− α

1−α = (AtZt)
− 1

1
α−1

simplifies to (
K̄t

Ȳt

)α
=

(
L̄

Ȳt

)α−1
(

1− q
1
α
−1

0 (AtZt)
−1

(
L̄

Ȳt

) 1
α
−1
)α

,

(
K̄t

Ȳt

)α(
L̄

Ȳt

)1−α

=

(
1− q

1
α
−1

0 (AtZt)
−1

(
L̄

Ȳt

) 1
α
−1
)α

,

and gives
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(
K̄t

)α (
L̄
)1−α

= Ȳt

(
1− q

1
α
−1

0 (AtZt)
−1

(
L̄

Ȳt

) 1
α
−1
)α

.

After some basic manipulation, the last expression yields the fixed point stated in text:

Ȳt
(
K̄t, L̄t; q0

)
=

(
K̄t

X̄t

(
Yt, L̄; q0

))α (
L̄
)1−α

, (16)

where

X̄t

(
Yt, L̄; q0

)
= 1− q

1
α
−1

0 (AtZt)
−1

(
L̄

Ȳt

) 1
α
−1

.

Marginal product of capital MPK:

We use the last equation above and raise both sides to power 1
α

to obtain

(
K̄t

)1 (
L̄
) 1
α
−1

= Ȳ
1
α
t − q

1
α
−1

0 (AtZt)
−1

(
L̄

Ȳt

) 1
α
−1

Ȳ
1
α
t

hence obtain

K̄t = Ȳ
1
α
t L̄

1
α
−1 − q

1
α
−1

0 (AtZt)
−1 Ȳt,

K̄t = (AtZt)
−1 Ȳt

(
AtZtȲ

1
α
−1

t L̄
1
α
−1 − q

1
α
−1

0

)
and

AtZtK̄t = Ȳt

(
AtZt

(
L̄

Ȳt

)1− 1
α

− q
1
α
−1

0

)
.

The above expression defines the production function Ȳ
(
K̄t, L̄; q0

)
implicitly via the expres-

sion:

AtZtK̄t − Ȳt

AtZt( L̄

Ȳ
(
K̄t, L̄; q0

))1− 1
α

− q
1
α
−1

0

 ≡ 0
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where Ȳ
(
K̄t, L̄; q0

)
is given by (16). We use implicit function theorem and differentiate the

above to calculate8

MPKt

(
K̄t, L̄; q0

)
=

α−1

(
L̄

Ȳ
(
K̄t, L̄; q0

))1− 1
α

− (AtZt)
−1 q

1
α
−1

0

−1

.

For q0 = 0, note, we obtain

MPKt

(
K̄t, L̄; 0

)
= α

(
L̄

Ȳ
(
K̄t, L̄; 0

)) 1
α
−1

,

which is the expression for MPK for the CD production function given by Ȳ
(
K̄t, L̄; 0

)
. Now,

by (16), we know that

Ȳ
(
K̄t, L̄; q0

)
= X̄t

(
Yt, L̄; q0

)−α
Ȳ
(
K̄t, L̄; 0

)
.

Accordingly, we have

MPKt

(
K̄t, L̄; q0

)
=

X̄t

(
Yt, L̄; q0

)α−1
α−1

(
L̄

Ȳ
(
K̄t, L̄; 0

))1− 1
α

− (AtZt)
−1 q

1
α
−1

0

−1

and hence

MPKt

(
K̄t, L̄; q0

)
=
(
X̄t

(
Yt, L̄; q0

)α−1
MPKt

(
K̄t, L̄; 0

)−1 − (AtZt)
−1 q

1
α
−1

0

)−1

,

which is the result stated in text.

Appendix E: User cost of capital in extended model

We derive the formula for the user cost of capital for our extended model, and it corre-

sponds to the formula stated in text.

Let R (q) be the user cost of a machine of type q, and let this be associated with some

8Derivation of the above expression is cumbersome and has been automated in the Mathematica notebook
MPK TCD.nb.
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dividend earned for having this machine for one period of length dt and renting it out for the

duration of that period. The key condition is that the profit from such an activity must be zero

after accounting for the cost of acquisition, dividend, and resell value of the machine at t+dt.

The costs of buying a machine at t and holding it for one period of length dt comprises

its nominal purchase price at time t, which is Ptkt (q), and the opportunity cost of funds

ρPtkt (q) dt incurred over period of length dt (ρ is the interest rate). The resell price is

Pt+dtkt+dt (q), but since with assumed Poisson probability δ∆ the machine disintegrates, the

expected residual value is (1− δ)Pt+dtkt+dt(q) dt. The zero profit condition is thus given by

Rt (q)︸ ︷︷ ︸
user cost

dt = (1 + ρ)Ptkt (q) dt︸ ︷︷ ︸
acquisition cost

− (1− δ)Pt+dtkt+dt (q) dt︸ ︷︷ ︸
residual value after a period of use

.

Assuming balanced growth, assume Pk grows at rate γk,t > 1 from one period

to the next (from t to t + dt). This simplifies the above expression to Rt (q) =

(1 + ρ− (1− δ) γk,t)Ptkt (q) . Given how we used r in the previous section, and assuming

BGP, we obtain rt = (1 + ρ− (1− δ) γk)Pt.

Appendix F: Continuity of Lebesgue integrals

We lack a good reference for this result and outline the proof here for completeness. The

claim is that the function

g (x) :=

� x

a

f (q) dv

is a continuous function; that is,

lim
xn→x0

� xn

a

f (q) dv =

� x

a

f (q) dv,

where f : R → R is a Lebesgue integrable function, a ∈ R, and “
�

” pertains to a Lebesgue

integral (v is the Lebesgue measure). Proof: Define an indicator function 1S (q) that takes the

value of 1 on the sub-scripted set S and rewrite the left-hand side as

lim
xn→x0

� xn

a

f (q) dv = lim
xn→x0

� +∞

−∞
1[a,xn] (q) f (q) dv.
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Since |1[a,xn] (q) f (q) | ≤ |f (q) |, we have 1[a,xn] (q) f (q) → f (q) (a.e.) on [a, x0] (see from

* below for formal argument). Given |f (q) | is Lebesgue integrable by assumption, we can

use dominated convergence theorem (DCT) and enter with the limit under the integral, which

yields

lim
xn→x0

� xn

a

f (q) dv =

� +∞

−∞
lim
xn→x0

1[a,xn] (q) f (q) dv.

*)Observe that limxn→x0 1[a,xn] (q) = 1[a,x0] (q) (a.e.), since for any q ≤ x0, we have

1[a,xn] (q) = 1, and for any q > x0, there exists an N such that for all n ≥ N we have

1[a,xn] (q) = 0. The set on which 1[a,xn] (q) and 1[a,x0] (q) disagree is of the form [x0, bn], where

bn → x0, and hence its Lebesgue measure is zero in the limit, as claimed. Consequently, by

DCT, we have

� +∞

−∞
lim
xn→x0

1[a,xn] (q) f (q) dv =

� +∞

−∞
1[a,x0] (q) f (q) dv,

which finishes the proof.

Appendix G: Feasibility of microfoundations for CD task technology

Here we discuss additional example of mechanical random processes that could give rise

to Pareto distributed capital requirements. As in the paper, the discussion draws on Newman

(2004) and especially Gabaix (2009).

Random growth Random growth model is one of the simplest mechanisms to obtain power

law dynamics. To see how it could work within our framework, suppose that capital require-

ment on average declines at a rate γ < 1 per unit of time. That is, k̄t+dt = γk̄t, where k̄t is the

mean value across all tasks (time being discrete dt > 0 or continuous dt → 0). Furthermore,

assume the distribution of the decline is uneven across individual tasks because innovations

affect individual tasks differently, and as in the paper deflate each variable by growth factor γt.

As is clear from the setup, some tasks may not decline at all in a given period—in which case

the relative capital requirement deflated by average growth factor γt is rising—while other

tasks may decline by more than the average and so their deflated requirement is falling. The
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important assumption here is that this process is i.i.d. across tasks. The discussion of random

growth model in Gabaix (2009) now applies, including the discussion of the variations of this

model that can generate a power law tail index below 1 when this reasoning is directly applied

to capital requirement k (q).

Endogenous technology verse function The fact that capital requirement is an inverse of

productivity of capital can be used to obtain tail power law from the basic fact of taking an

inverse of diffused observation (Sornette, 2002). Let y = x
1
ζ−1 , ζ − 1 > 0 and suppose x

is distributed according to some pdf px (x) such that p (x) → C > 0 as x → 0. Then, the

tail distribution of y follows a power law with exponent ζ. Of course, applying this result

requires that the economy operates far into the tail of the distribution, or else it will not even

approximately behave as our CD task technology.9

Yule process It is also possible to employ Yule’s “speciation” process. As in the case of the

example discussed in the paper, the key to this approach to endogenize Pareto distribution is

the observation that a variable that grows exponentially and is stopped after an exponentially

distributed time is Pareto distributed at the stopping time.10 This extension is fairly involved

and we omit it from. However, based on the insights from information theory, it is possible to

obtain a bridge between our model and the combinatorial growth literature (Weitzman, 1998;

Jones, 2021) and show that the resulting distribution that involves “speciation” of ideas is

Pareto. Preliminary results are available upon a request.

Appendix H: Corollary to Uzawa’s theorem

We lack a good reference for this result and outline it here for completeness. The ap-

pendix shows how an additional assumption of declining price of capital goods leads to Cobb–

Douglas production function.

9The result follows from the change of variables formula.
10The key mathematical property is that an exponential of an exponentially distributed random variable is

Pareto distributed, as the following calculation shows (X ∼exponential, Y = exp (X)):

Pr (Y ≤ y) = Pr (exp (X) ≤ y) = Pr (X ≤ log (y)) = 1− x−λ.
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By Theorem 2.6 and Theorem 2.7 in Acemoglu (2009), balanced growth path with pos-

itive and constant factor shares from t ≥ 0 implies that one can find a sequence {at} such

that along that path Yt
(
Kt, L̄

)
= Y0

(
Kt, atL̄

)
(Theorem 2.6) and

∂Yt(Kt,L̄)
∂Kt

=
∂Y0(Kt,atL̄)

∂Kt
,

∂Yt(Kt,L̄)
∂L̄

=
∂Y0(Kt,atL̄)

∂L̄
(Theorem 2.7). Consider now the following definition: capital-

augmenting progress occurs on the balanced growth path iff kt := Kt/atL̄ grows at a strictly

positive rate. To see that this is a necessary and sufficient condition to imply that Y0

(
Kt, atL̄

)
is CD, note we can express production along the balanced growth path as f (kt) := Y0(kt, 1),

and that the constancy of the capital share implies ktf ′ (kt) /f (kt) = α on that path, for some

constant 0 < α < 1 and for all t ≥ 0. Since kt is growing and sweeps the entire domain

(k0,∞), we obtain an ODE that solves to f (k) = Ckα for some constant C, which yields

the result: Y0

(
K, aL̄

)
= CKα

(
aL̄
)1−α. Concluding, CD production function obtains in any

environment that restricts the balanced growth path to be such that kt must grow over time,

either by building it into the environment or requiring an equilibrium condition that implies

that (e.g. a steadily declining price of capital goods).
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